Week 2 Worksheet Oscillators and Variational Calculus

Jacob Erlikhman

1/29/23

Exercise 1. Determine the oscillations of a spring-mass system under a force $F(t)$ of the following forms, if at time $t = 0$ the system is at rest in equilibrium (i.e. $x = 0$ and $\dot{x} = 0$).

Possible Hint: If you don't remember the analysis from class, you can do it quickly here. Make the substitution $\xi = \dot{x} + i\omega x$, where $\omega^2 = k/m$. Check that the equation of motion for x becomes $\dot{\xi} - i\omega \xi = F(t)/m$. If we find a solution for $\xi(t)$, then $x(t) = \text{Im}[\xi(t)]/\omega$.

- a) $F(t) \equiv F_0$ is a constant.
- b) $F(t) = at$.
- c) $F(t) = F_0 e^{-\alpha t}$.

Exercise 2. Determine the final amplitude for the oscillations of a system under a force $F(t)$ which is 0 for $t < 0$, F_0t/T for $t \in (0, T)$, and F_0 for $t > T$. Suppose that up to $t = 0$ the system is at rest in equilibrium.

Exercise 3. In this exercise, you will find the equation of the catenary, which is the shape a chain takes when hung freely by its ends, as below.

a) Consider a chain as above of length ℓ suspended from two fixed points a distance d apart and of equal height above the ground. Suppose that the chain has uniform mass density ρ . What is the potential energy of the chain?

b) Minimize this energy, and use the Euler-Lagrange equation to find the differential equation for the function $y(x)$ —the height of a point on the chain at a distance x on the horizontal, see the figure below. You should obtain

c) Solve the differential equation above using the steps below to obtain the solution

$$
y(x) = C_1 \cosh\left(\frac{x + C_2}{C_1}\right).
$$

1. Make the substitution

$$
p = y' = \frac{\mathrm{d}y}{\mathrm{d}x}.
$$

Calculate dp/dy to get everything in terms of p, dp/dy , and y

- 2. Separate variables, and integrate.
- 3. Replace back $p = dy/dx$, and separate variables again to solve for $y(x)$. You'll need the integral

$$
\int \frac{\mathrm{d}t}{\sqrt{at^2 - 1}} = \cosh^{-1}(at)/a + C.
$$

The hyperbolic cosine function cosh is defined by $2 \cosh(t) = e^t + e^{-t}$.

Remark. Actually determining the constants C_i is a bit beyond us. Here is the idea if you're interested (and/or want to try this at home). Write the length of the chain as

$$
\ell = \int_0^d \mathrm{d}x \sqrt{1 + y'^2}.
$$

Then, we can use the constraints $y(0) = h$ and $y(d) = h$ to hopefully get somewhere. Unfortunately, we need to solve a transcendental equation, and this isn't easy. If you're interested, bring this up during office hours, or see pp. 356-7 of Michael Spivak's *A Comprehensive Introduction to Differential Geometry Volume I, 3rd edition* (these pages are independent of the rest of the book).