Week 7 Worksheet Noninertial Reference Frames Jacob Erlikhman 3/6/23

Exercise 1. *Quick Problems.*

- a) Suppose you are in the backseat of an accelerating car holding a helium-filled balloon (on a string). Which way does the balloon tilt, and why?
- b) A bird is flying due north at 45° latitude. In which direction does the Coriolis force act on the bird? Calculate the approximate magnitude of this force on the bird.
- c) Does the direction that water drains (i.e. clockwise vs. counter-clockwise) change in the southern hemisphere vs. the northern hemisphere? Explain. *Hint:* This is a trick question!

Remark. Hurricanes really do swirl in different directions depending on whether they are in the northern or southern hemisphere.

Exercise 2. Let R be the radius of the earth thought of as a perfect sphere and h the height of a tower from which an object falls at the equator (at the end, all equations can be multiplied by cos λ for the result at latitude λ). Let Ω be the angular velocity of the earth. Ignore air resistance.

a) Let $\omega(x)$ be the angular velocity of the object after it has fallen a vertical distance $x =$ 1 $\frac{1}{2}gt^2$. Show that

$$
\omega(x) = \frac{\Omega(R+h)^2}{(R+h-x)^2}.
$$

b) Show that in the approximation $h \ll R$, we have

$$
\omega(t) = \Omega(1 + gt^2/R).
$$

- c) If the time of descent is T , calculate the total angular displacement and the total displacement as measured in an inertial reference frame.
- d) Calculate the displacement from the foot of the tower as measured along the earth's surface.

Exercise 3. *The restricted three-body problem, Lagrange points, and the Trojan Asteroids.*[1](#page-0-0) Suppose given 3 bodies, one of which has a negligible mass m compared to the other two, \mathbf{b}_1 and \mathbf{b}_2 , with masses $m_1 > m_2$. Suppose further that \mathbf{b}_1 and \mathbf{b}_2 move in a plane and are in circular orbits about their center of mass C . Since the force on the third body depends on its distances from **and** $**b**₂$ **, the easiest coordinate system to work with is the noninertial one in** which \mathbf{b}_i are fixed in time. Choose the line from $\mathbf{b}_1(t)$ to $\mathbf{b}_2(t)$ to be the (rotating) x-axis, with *C* at $(0, 0, 0)$. Define $d_i = |\mathbf{b}_i|$.

¹Adapted from Michael Spivak's *Physics for Mathematicians, Mechanics*, Addendum 10A.

- a) Let *a* be the distance between \mathbf{b}_1 and \mathbf{b}_2 . Write d_i in terms of it and the masses m_i .
- b) Using you answer to (a) and Kepler's third law,

$$
\tau^2 = \frac{4\pi^2 a^3}{G(m_1 + m_2)}
$$

;

write the frequency of rotation ω of our rotating coordinate system in terms of d_1 or d_2 .

c) Let coordinates for the third particle be given by $c(t)$. Let $r_i = |c - b_i|$. Find the equation of motion for the third particle. It should have the form

$$
\ddot{\mathbf{c}} = -G\left(m_1\frac{\mathbf{c}-\mathbf{b}_1}{r_1^3} + m_2\frac{\mathbf{c}-\mathbf{b}_2}{r_2^3}\right) + \mathbf{F}_{cf} + \mathbf{F}_{cor},
$$

where \mathbf{F}_{cf} and \mathbf{F}_{cor} are the centrifugal and Coriolis forces, respectively.

d) Suppose we want to solve for stationary points of the orbit of the third mass *in the rotating coordinate system we are considering*, i.e. we want to solve for the case $\mathbf{c}(t) \equiv$ (C_1, C_2, C_3) , where the C_i are constants. Starting with the EOM from (c), show that the solutions are in the configuration in the figure below: 3 colinear points at $x < -d_1$, $x \in (-d_1, d_2)$, and $x > d_2$, and 2 points that form an equilateral triangle between $\mathbf{b}_1, \mathbf{b}_2$, and the point.

Remark. Part (d) is by far the hardest part of the worksheet. The points you obtain are the Lagrange points L_1, \ldots, L_5 . It turns out that only L_4 and L_5 are stable. The Trojan asteroids are those located at L_4 and L_5 for m_2 being Jupiter (there are thousands of these); there are also such asteroids for Mars and Neptune (though not Earth). Although the points L_1 and L_2 are unstable, they are used for satellites, such as the Solar and Heliospheric Observatory (SOHO) at L_1 and WMAP and the James Webb telescope at $L₂$. They are kept in place by onboard rockets.

