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Exercise 1. Consider a rectangular solid of three unequal dimensions, like a filled match box.

Remark. The results of this exercise apply equally well to any solid, e.g. a tennis racket, with
three different moments of inertia I1 < I2 < I3.

a) What are the principal axes?

b) Experimentally, try to throw the box vertically and make it spin around each of these axes.
Which of the axes from (a) work, and which don’t? You should find that you can (with a
deft throw) get the box to spin around two of the axes, but one of them will almost always
result in an unwieldy tumbling motion.

c) Based on (b), make an argument for which axes are stable, and which aren’t. Back up
your experimental argument with a physical explanation, using the following steps.

1. Use conservation of angular momentum and kinetic energy (why are these con-
served?) to obtain two equations for the components of L, Li D Ii!i .

2. Notice that one of the equations is that of a sphere and the other that of an ellipsoid
(in .L1; L2; L3/-space). Simultaneous solutions of the equations will correspond
to intersections of these surfaces. Graphically, find the forms of the intersections
corresponding to rotations about each of the principal axes.
Hint: To start, consider limiting cases. For example, the smallest sphere intersecting
an ellipsoid (with the same center) will be the one that touches it in exactly two
places: the endpoints of the minor axis.

3. Make the argument for or against stability about each of the principal axes, I1 <
I2 < I3.

Exercise 2. Consider a coupled pendulum as in the figure below. To start, suppose equal masses
and lengths. We could go through with a rigorous analysis of normal modes à la Taylor, but let’s
try to work intuitively.

a) Use physical intuition to find the types of motion that correspond to the normal modes.
Hint: The normal modes have something to do with the masses moving “in sync.”
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b) Derive the equations of motion for both types of motion in (a). Let !0 D
p
g=l and

K D k=m, where k is the spring constant.

c) Show that for one of the normal modes both pendulums have frequency !0 and for the
other both pendulums have frequency

! D
p
!02 C 2K:

Why is ! > !0?

d) Now, suppose we have arbitrary initial conditions. Using your results from (b) and (c),
write down the general solutions for x1.t/ and x2.t/ (you don’t have to solve for the four
constants which necessarily appear).

e) Solve the equations for the initial conditions x1.0/ D C , Pxi .0/ D 0, x2.0/ D 0.

f) In the situation of (e), argue that for weak coupling, i.e. K=!0 � 1, we get beats:

Exercise 3. Suppose we are in the situation of Exercise 2, but now the pendulums have different
lengths, l1 and l2, and different masses, m1 and m2. Again, let’s try to work intuitively. Set

Ki D
k

mi
!i D

r
g

li
:

a) Write down the general form of the equations of motion.

b) Based on your work in Exercise 2, argue why it is reasonable to look for solutions of the
equations of motion that are complex exponentials with the same frequency.
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c) Look for solutions that are the real part of complex solutions

x1.t/ D Ae
i�t ; x2.t/ D Be

i�t :

d) Solve for �, denote the solutions for � as f1 and f2, and let B=A be C1 and C2 (since this
will depend on �).

e) Write down the solutions to the equations of motion, xi .t/, in terms of Ci and fi , time t ,
and 4 unknown constants, which depend on the initial conditions.

f) Determine the unknown constants for the same initial conditions as before, x1.0/ D C ,
Pxi .0/ D 0, x2.0/ D 0.

g) Argue that for weak coupling, we still get beats, as in 2(f).

Exercise 4. Solve Exercises 2 and 3 (note that 2 is a special case of 3) using the method of
finding the normal modes in Taylor.


