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Exercise 1. a) What does the gradient tell you about a function? Why?
Hints: If rf .x/ D w , argue or show that

D Ovf .x/ D Ov � w ;

where D Ovf .x/ is the directional derivative of f at x in the direction Ov. It may help to consider the
special cases Ov D .0; 1/ and Ov D .1; 0/ in the case that f .x; y/ is a function on the plane. In this
scenario, what do you get if Ov D .a; b/ (with a2 C b2 D 1)?

Remark. Notice that this result holds in any dimension n 2 N.

b) What does the curl tell you about a vector field? Why?
Hint: Draw and calculate the curls of some example vector fields, like �y Ox C x Oy or x Oy. Now, try
the vector fields x Ox C y Oy C z Oz, Oz, and z Oz.

c) What does the divergence tell you about a vector field? Why?
Hint: Using the same vector fields from the hint from (b), calculate the divergence for each of them.

d) Use (a) and (b) to give an intuitive explanation of why the curl of a gradient is always 0.

e) Use (b) and (c) to give an intuitive explanation of why the divergence of a curl is always 0.

f) Show that r � rf D 0 directly.

g) Show that r � r � v D 0 directly.

a) The gradient tells us the direction of greatest change in the function. Notice that this will follow from
the formula in the hint. Indeed, if the gradient is given by the fixed vector w and the directional
derivative in the direction given by Ov is Ov � w , then this will be greatest when Ov D Ow. It remains to
prove the formula. By definition,

Dvf .x/ D
X

viDif .x/;

where Dif .x/ is the i th directional derivative of f at x, i.e. it is

Dif .x/ D lim
h!0

f .x1; : : : ; xi�1; xi C h; xiC1; : : : ; xn/ � f .x/

h
:

1
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(I’ve written it in n-dimensional space, but the specification to 3-dimensions should be clear). But
notice that these are just

Dif .x/ D
@f

@xi

.x/;

so that

Dvf .x/ D v � w :

b) The curl tells you how much a vector field “curls.” The idea is that if you think of the vector field as
defining a water current and place a floating bob with needles sticking out of it (parallel to the plane
of the water), the curl tells you about which axis that bob would float, how fast it would do this (this
is the magnitude of the curl), and which way it would float (this is the sign of the curl). This is given
by the examples on pages 17-19 of Griffiths 4th edition. These calculations show what’s going on,
and they’re done in Examples 1.4 and 1.5 on those pages.

c) Similarly, the divergence tells you how much a vector field “diverges.” Its sign tells you whether a
bob gets pulled in (negative) or pushed out (positive), and its magnitude tells you “how fast” that
happens.

d) Suppose we had a gradient which went around in a circle. Now, imagine going along this circle and
coming back. You’d find that the function should be larger after you return than when you started,
which is impossible! Alternatively, suppose you had a function which defined a surface; further,
suppose that this surface had a dip or a valley somehwere. Then the gradient would point in the
direction that a ball would fall if placed on the surface (the ball would of course fall into the dip or
valley). But if the gradient had a curl, what would happen to the ball? It would spin in circles rather
than falling down! That doesn’t make sense, so the gradient can’t have a curl.

e) Consider a vector field in the .x; y/-plane which has a curl. This curl will necessarily point perpen-
dicular to the plane. In order for it to have a nonzero divergence, it is necessary that it has some
nontrivial dependence on the z-coordinate. I.e. as z increases, it either needs to increase or decrease.
But this corresponds to a vector field which causes floating bobs to swirl with ever greater/lesser
speed along the same circular trajectory, which is impossible by the argument in (d).

f) This part and part (g) were on the homework, so you’ll get solutions when those come out.

Exercise 2. Griffiths 1.13. Let d be the separation vector from a fixed point .x0; y 0; z0/ to the point .x; y; z/,
and let d be its length. Show that

a) r.d 2/ D 2d,

b) r.1=d/ D � Od=d 2.

c) What is the general formula for r.d n/?

d) You computed these formulas in cartesian coordinates. Do they hold in other coordinate systems?
Why or why not?
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Remark. To prove this would require quite a bit of work or more tools than we have at our disposal.
However, you should be able to come up with an intuitive argument.

a) Note that d D
p

.x � x0/2 C .y � y 0/2 C .z � z0/2, while d D x � x0. Thus,

r.d 2/ D2.x � x0/ Ox C 2.y � y 0/ Oy C 2.z � z0/ Oz

D2d:

b) We have

r

�
1

d

�
D�

1

2
�
2d

d 3

D�

Od

d 2

c) Likewise,

r.d n/ D
n

2
� 2d � d n�2:

d) The formulas we’ve computed are coordinate-free. To see this, note that d is a distance; hence,
it cannot depend on our choice of coordinates. Similarly, our work from Exercise 1 tells us that
the gradient is the direction of greatest change of a function. Its magnitude can’t depend on our
choice of coordinates, since it tells us a rate of change in a direction that also can’t depend on our
choice of coordinates. This is because the direction of greatest change is a coordinate-independent
notion. Thus, we have that all the pieces of our calculation can’t depend on coordinate choices, so
our calculation is coordinate-independent.

Exercise 3. Challenge/Extra Problem. The Stokes’ and divergence theorems have generalizations to any
dimension n 2 N. In this problem, you’ll get an idea of what those are.

a) The divergence theorem directly generalizes to any dimension. Write down the generalization.

b) Focus for the divergence theorem on the 1- and 2-dimensional cases (i.e. the “volume” we’re inte-
grating over is 1- or 2-dimensional). Do either of these look familiar?

c) To generalize Stokes’ theorem requires more tools than we have at our disposal at the moment. How-
ever, we can readily “specialize” to dimension 1. Write down what Stokes’ theorem should say in
dimension 1.
Hint: Use the usual Stokes’ theorem. Consider an integration region of the form .�"; "/ � Œa; b�, and
take "! 0.

d) Now, specialize to dimension 2. What do you obtain? It should look similar to your 2-dimensional
result from (b).

e) Explain why in dimensions 1 and 2 the divergence and Stokes’ theorems give the same results.
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Remark. Although it isn’t clear from this exercise, it is actually the generalized Stokes’ theorem that is
(more of) a generalization of the fundamental theorem of calculus, not the divergence theorem. One com-
ment is that the generalized Stokes’ theorem is used as such, while the divergence theorem is not.

a) Let

r � v D

nX
iD1

@vi

@xi

be the generalization of the divergence to n-vectors. The divergence theorem is thenZ
M

r � v dVn D

Z
@M

v � On dVn�1:

Here, M is an n-dimensional “volume” that we’re integrating over and dVn is an infinitesimal piece of
that volume. Similarly, @M is its boundary, which is .n�1/-dimensional, and dVn�1 is its infinitesimal
piece of volume. Lastly, On is the normal vector of @M .

b) In 1 dimension, the divergence theorem saysZ
Œa;b�

f 0.x/ dx D f .b/ � f .a/:

Indeed, the boundary of the interval is its endpoints, and taking the Riemann sum over a finite set
is just taking the ordinary sum. Why do we get the minus sign? This is because the normal to the
interval will point in opposite directions at the end points (this follows from the right hand rule).
Thus, in dimension 1 we get the fundamental theorem of calculus.

In 2 dimensions, we have to be careful. The definition of the normal vector is not entirely obvious. If
we have a 2-dimensional region which is bounded by a 1-dimensional line, i.e. a closed curve, what
is the normal to this curve? Well, if the line element d` D .dx; dy/ is tangent to the curve, then
something orthogonal to it will be On D .dy;� dx/, since On � d` D 0. Thus, we haveZ

C

v � On d` D

Z
C

.v1 dy � v2 dx/;

where C is the bounding curve of a region D. This is the right hand side of the divergence theorem.
For the other side, we get Z

D

�
@v1

@x
C

@v2

@y

�
da:

This looks a bit funky, but, if we change v D .v1; v2/ 7! .v2;�v1/, then we getZ
D

�
@v2

@x
�

@v1

@y

�
D

Z
C

.v1 dx C v2 dy/;

which is more reminiscent of Stokes’ theorem.1 This theorem is known as Green’s theorem.
1Note that we can do this without loss of generality. Indeed, both v1 and v2 are functions of both x and y.
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c) Following the hint, let’s consider a vector field v D .f; 0; 0/ and integrate it over the suggested
region. Since our end-result should be one-dimensional, we should set f to be independent of two of
the coordinates, but which ones? Before figuring this out, let’s compute what the curl of v is. We get
Thus, we have

r � v D

�
0;�

@f

@z
;
@f

@y

�
:

Now, it’s up to us if we want to set f to depend on y or z. Note that if we choose f to depend on x,
Stokes’ theorem will just say 0 D 0. For simplicity, suppose f depends only on y, so that

r � v D

�
0; 0;

@f

@y

�
:

Now,

lim
"!0

Z
.�";"/�Œa;b�

r � v � da D f .b/ � f .a/:

The right hand side of Stokes’ theorem gives the line integral over the boundary of a rectangle which
has an ever-shrinking width. Thus, its boundary is just the boundary of the interval, and the line
integral over this is just evaluation at the boundary points. What do we get on the left hand side?
Well,

lim
"!0

r � v � da D
@f

@y
dy

since for Œa; b� along the y-direction and .�"; "/ along the x-direction, the normal to this region will
point in the z–direction. Thus, we have that Stokes’ theorem saysZ b

a

f 0.x/ dx D f .b/ � f .a/I

we got the fundamental theorem of calculus again!

d) Let’s use the same strategy from (c). We’ll integrate v D .f; g; 0/ over a two-dimensional region S .
We then get Z

S

r � v � da D

Z
@S

v � d`:

Now, we want to specialize to two-dimensions, so that means we should assume that the region we’re
integrating over is entirely contained in the .x; y/-plane. Thus, its normal will point in the z-direction.
Similarly, f and g should be independent of z. Using this, the left hand side givesZ

S

�
@g

@x
�

@f

@y

�
da:
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On the other hand, the right hand side of Stokes’ theorem givesZ
@S

.f dx C g dy/:

Putting these together, we have the result,Z
S

�
@g

@x
�

@f

@y

�
da D

Z
@S

.f dx C g dy/:

This is Green’s theorem again! This is identical to our result from (b)!

e) So what’s going on? It appears that Stokes’ theorem and the divergence theorem degenerate to the
same theorem in dimensions 1 and 2. A possible explanation in two dimensions is that Stokes’ the-
orem measures how much water is “trapped” inside a two-dimensional region, while the divergence
theorem measures how much water “leaks out.” It follows that in dimension 2 these two things are
measuring two sides of the same coin, so there’s no way we could obtain extra information from using
one over the other. Of course, in 1 dimension there is no difference between curling and divergence,
since there’s only one derivative to take anyway.


