

# Week 4 Worksheet

## Electrostatics

Jacob Erlikhman

January 29, 2026

**Exercise 1.** Using Dirac delta functions in the appropriate coordinates if necessary, express the following charge distributions as three-dimensional charge densities  $\rho(\mathbf{r})$ .

- In spherical coordinates, a charge  $Q$  uniformly distributed over a spherical shell of radius  $R$ .
- In cylindrical coordinates, a charge  $\lambda$  per unit length uniformly distributed over a cylindrical surface of radius  $b$ .
- In cylindrical coordinates, a charge  $Q$  spread uniformly over a flat circular disc of negligible thickness and radius  $R$ .

**Exercise 2.** Two infinite parallel plates carry equal and opposite uniform charge densities  $\pm\sigma$ . Put the positively charged plate in the  $(x, y)$ -plane and the negatively charged one at  $z = 1$  above it. Find the electric field in each of three regions:  $z < 0$ ,  $0 < z < 1$ , and  $z > 1$ .

**Exercise 3.**

- The potential at a point  $\mathbf{r}$  is defined as

$$V(\mathbf{r}) = - \int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\ell,$$

where  $\mathcal{O}$  is some reference point. Explain why this is well-defined (i.e. unambiguous, up to the choice of  $\mathcal{O}$ ).

*Hint:* Use Stokes' theorem.

- An infinite plate carries a uniform charge density  $\sigma$ . Find the potential everywhere.

*Hints:* Recall that the electric field is  $E = \sigma/2\epsilon_0$ . Where would you put your reference point  $\mathcal{O}$ ?