Final Review Problems
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Exercise 1. A charge is distributed with linear charge density A over the circumference of a circle of radius
R which lies in the (x,y)-plane with center at the origin. Find the potential V(z) on the z-axis in the
following cases.

a) A is uniform.
b) A = Csin(nf), where n € N, C is a constant, and 6 is the polar angle.
c) A=C6.

Exercise 2. A dielectric of arbitrary shape, volume V', and relative permittivity &, which is close to 1 (i.e.
such that ¢, — 1 < 1) is brought into a uniform electric field E. Outside the dielectric, ¢, = 1. Find the field
at a large distance r from the dielectric.

Exercise 3. The center of a metal sphere of radius a lies on the flat boundary between two dielectric regions
of permittivities £, and &,. At a distance b from the center of the sphere in the region with permittivity &;
is placed a point charge g.

a) Find the potential of the sphere if it is insulated and uncharged.
Hint: If you find the total charge which is induced in the dielectrics, then you can use Exercise 2 from
the midterm review problems to determine the potential of the sphere. You should get
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b) Find the charge induced on the sphere if it is grounded.

Exercise 4. Griffiths 5.13. Suppose you have two infinite, parallel line charges A a distance d apart, which
are moving at a constant speed v. How great would v have to be for the magnetic attraction to balance the
electrical repulsion? Calculate the number, and comment on the result.

Exercise 5. Griffiths 5.16. Two long coaxial solenoids each carry a current 7, but in opposite directions.
The inner solenoid of radius @ has n; turns per unit length, while the outer one of radius b > a has n, turns
per unit length. Find B in each of the three regions:

a) inside the inner solenoid,
b) between the solenoids, and

¢) outside both solenoids.



Exercise 6. Griffiths 6.15.1f Jy = 0 everywhere, the curl of H vanishes, so we can express H as the
gradient of a scalar potential W,

H=-VW.
Thus,
V2W =V-M,

so W obeys Poisson’s equation with V- M as the “source.” As an example, find the field inside a uniformly
magnetized sphere by separation of variables.

Exercise 7. Find the acceleration a of a freely falling, circular, metal plate in a uniform magnetic field
which is parallel to the surface of the ground. The plate is oriented with its normal vector (to the circular
sides) perpendicular to the direction of the magnetic field and parallel to the ground. The radius of the plate
is R and its thickness is d < R. Its mass is m and the strength of the magnetic field is B.
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Exercise 8. Explain how an AC generator works.
Exercise 9. Griffiths 9.20.  a) Show that the skin depth in a poor conductor (00 K we) is g\/ g/ L.

b) Show that the skin depth in a good conductor (o > we) is A /2w, where A is the wavelength inside
the conductor. Find the skin depth in nanometers for a typical metal (o ~ 107(2m)~!) in the visible
range @ ~ 10'> Hz, assuming ¢ ~ gy and j ~ j19. Why are metals opaque?

¢) Show that in a good conductor the magnetic field lags the electric field by 7/4 radians, and find the
ratio of their amplitudes.

Exercise 10. Griffiths 9.39. For refraction of light from a medium 7, into a medium with n; < n,, Snell’s
law has a critical angle

0. = arcsin(ny/ny).

When the incident angle 6; is greater than 6., there is no refracted ray: We get total internal reflection.
However, although no energy penetrates the second medium, there is a nonzero field inside the second
medium which is rapidly attenuated. We can use the results from class/the textbook with k7 = wn,/c and

k7 = k7 (sinfrx + cos0r2).



However, we should now take
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a) Show that
ET(I', l) — EoTe—Kze—i(kx—wt)’
where
K= 9\/(111511191)2—1/122 and k= %sin@.
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Notice that this is a wave propagating in the x direction and attenuated in the z direction.

b) Noting that

cos Or
- cos 0y
is now imaginary, use Fresnel’s equations
Bux =2 o
For = For
a+p

to calculate the reflection coefficient for polarization parallel to the plane of incidence.



c) Do the same for polarization perpendicular to the plane of incidence.

d) In the case of polarization perpendicular to the plane of incidence, show that the real evanescent fields
are

E(r,t) =Ege “* cos(kx —wt)y

E
B(r,1) =—0pxz [K sin(kx —wt)X + k cos(kx — a)t)é] )
1)

e) Check that the fields in (d) satisfy Maxwell’s equations.

f) For the fields in (d), construct the Poynting vector, and show that, on average, no energy is transmitted
in the z direction.

Exercise 11. The Dirac Monopole. Consider a half-infinite string of magnetic dipoles, equivalently, a
half-infinite solenoid, denoted L.

a) Show that the vector potential outside the string is
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b) Show that the curl of A is directed radially outward from the end of the string, varies inversely with
distance squared from the end of the string, and has total outward flux g.

where g is a constant.

Remark. The result of (b) shows that the magnetic field outside of the solenoid is that given by a magnetic
monopole of exactly charge g. On the other hand, it can be shown (try for yourself!) that changing the
position of the string changes A by a gauge transformation. Explicitly, if we have two different strings
L, L’, then the integral taken along the closed path C = L — L’ will give

Ap(r) =AL(r) + --VQe(r).
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where 2¢ is the solid angle subtended by the contour C at the observation point r. This means that the
string itself is not observable, which is consistent with the fact that physical effects due to the monopole
should not depend on the theoretical artifice used to create it (the string). In 1930, Dirac famously showed
that the existence of magnetic monopoles implies the quantization of electric (and magnetic) charge! This
is why people have been interested in magnetic monopoles to this day.



