
Midterm 1 Review Solutions

Exercise 1. We can represent a counter-clockwise rotation by an angle � about an axis Or by the unitary
operator

U.�/ D e�i� Or �S=„;

where S is the angular momentum operator. For particles of spin 1/2, S D „�=2.

a) Show that . Or � � /2 D 1, the identity operator.
Hint: Using Œ�i ; �j � D 2i"ijk�k and f�i ; �j g D 2ıij1, show first that

�i�j D 1ıij C i"ijk�k:

b) Show that

U.�/ D 1 cos.�=2/ � i Or � � sin.�=2/:

c) Determine the spin operator �� which points in the direction described by .�; '/ with ' D 0.
Hint: Do this by rotating �z by an angle � about the y-axis.

d) Redo problem 4.59 from Griffiths: If two electrons are in the spin singlet state, S .1/z is the component
of spin angular momentum of particle 1 along the z-axis, and S .2/

�
is the spin angular momentum of

particle 2 along the Or D .�; 0/ axis, show thatD
S .1/z S

.2/

�

E
D �
„2

4
cos �:

a) Add the commutator to the anti-commutator to get the relation given in the hint. Now,

. Or � � /2 D ri�irj�j D rirj .1ıij C i"ijk�k/ D 1;

since Or2 D
P
ri
2 D 1 and "ijk is antisymmetric under interchange of indices, while rirj is symmet-

ric.

b) Write

U.�/ D e�i� Or �S=„;
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and expand the exponential as a power series:

U.�/ D

1X
nD0

.�i�=2/n. Or � � /n

nŠ

D

1X
kD0

.�i�=2/2k

.2k/Š
1C

1X
kD0

.�i�=2/2kC1

.2k C 1/Š
Or � �

D1 cos.�=2/ � i Or � � sin.�=2/;

where we use the power series for sine and cosine in the final line (and note that .�i/2k D .�1/k and
.�i/2kC1 D �i.�1/k).

c) We have determined a nice form for the operator U.�/. Setting Or D Oy, we have

Uy.�/ D 1 cos.�=2/ � i�y sin.�=2/:

A coordinate transformation which corresponds to Uy.�/ will transform operators written in the orig-
inal basis by

A 7! Uy.�/
�AUy.�/:

Thus, we have

�� DUy.�/
��zUy.�/

D�z cos2.�=2/ � i Œ�z; �y� sin.�=2/ cos.�=2/C �y�z�y sin2.�=2/

D�zŒcos2.�=2/ � sin2.�=2/� � 2�x sin.�=2/ cos.�=2/
D�z cos � � �x sin �

D

"
cos � � sin �
� sin � � cos �

#
:

d) Our spin state is

1
p
2
.j"#i � j#"i/:

It’s easiest to figure out what to do if we write this as vectors:

1
p
2

0@"1
0

#
˝

"
0

1

#
�

"
0

1

#
˝

"
1

0

#1A :
Thus, we getD
S .1/z S

.2/

�

E
D
„2

8

�h
1 0

i
˝

h
0 1

i
�

h
0 1

i
˝

h
1 0

i�0@"1
0

#
˝

"
� sin �
� cos �

#
C

"
0

1

#
˝

"
cos �
� sin �

#1A
D
„2

8
.� cos � � cos �/

D�
„2

4
cos �:
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Exercise 2. Griffiths 5.9. Consider two non-interacting particles in an infinite square well of width a such
that the single particle wavefunction is

 n.x/ D

r
2

a
sin.n�x=a/

with energy En D n2K. Construct the ground state and first excited state of the two-particle system if the
particles are a) spin-1/2 and b) spin-1. Determine the energy and degeneracies of these states.

The solution to this problem is in the Week 3 Worksheet Solutions.

Exercise 3. Helium.

a) Consider a singly-ionized helium ion. How much more energy does it take to ionize its bound electron
compared to hydrogen?

b) Still with HeC. What is the wavelength of the emitted photon during the electron transition from
n D 2! 1?

c) Now, consider the usual helium-4. Which ground state has higher energy, parahelium (spin singlet)
or orthohelium (spin triplet)? Why? Griffiths 5.14. How would this change if the two electrons are
identical bosons?

d) Griffiths 5.22. Helium-3 is a fermion with spin-1/2 (as compared to helium-4, which is a boson.
Why?). At low temperatures, helium-3 can be treated as a Fermi gas. If its mass density is 82 kg/m3,
determine its Fermi temperature.

a) The only difference between singly-ionized helium and hydrogen is the number of protons. The
energy levels for hydrogen-like atoms come from a potential in the Schrödinger equation which is
proportional to Ze2. Now, we have to remember that in hydrogen the energy levels go as Z2. Ex-
plicitly,

En D�
1

2

˛2Z2mc2

n2

D�E0
Z2

n2
;

where E0 D 13:6 eV. Thus, helium-3 is 4 times harder to ionize than hydrogen.

b) Recall that E D pc for light; hence,

E D
hc

�
:

Since E2 �E1 D 3E0, we have

� D
hc

3E0
:

Since hc D 1240 eV � nm, we have

� � 30 nm:
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c) Since the triplet is symmetric, the spatial wavefunction which is associated to orthohelium must be
antisymmetric. Since the lowest energy state is symmetric (both electrons in n D 1), it follows that
the triplet has higher energy than the singlet. If they were both bosons, then we’d have the opposite.

d) Helium-3 is a fermion because it has an odd number of fermions. The Fermi energy is given by (make
sure you can derive this!)

EF D
�2„2

2m

�
3n

�

�2=3
;

where n D N=V is the number density. Now, mn D � and EF D kTF , where k is Boltzmann’s
constant, so

TF D
„2

2

 
3��2

m5=2

!2=3
:

We can now plug in numbers:

TF � 4 K:

Exercise 4. Consider a transformation on a physical system represented by a unitary operator U .

a) How do kets transform under U ? What about operators?

b) If the hamiltonian H commutes with U , what does that imply about H being invariant under the
transformation U ? What does this imply about a non-degenerate eigenstate of H?

c) Derive parity selection rules for hydrogen with respect to momentum and angular momentum matrix
elements. I.e. determine when ˝

n0l 0m0jpjnlm
˛
D 0

and ˝
n0l 0m0jLjnlm

˛
D 0:

a) Kets just transform as

j i 7! U j i :

This question was intentionally ambiguous! If we consider passive transformations, then operators
transform as

A 7! U �AU:

However, if we only consider active transformations and want to force hAi to be unchanged after
action by U , then we want to send

A 7! UAU �:
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Indeed, since

hAi D h jA j i ;

we have

hAi 7! h jU �A0U j i ;

so we need

A0 D UAU �:

b) If the hamiltonian commutes with the symmetry U , then that means

UH D HU H) UHU �
D H:

Thus, if we have a nondegenerate eigenket of H with

H j i D � j i ;

then

HU j i D UH j i D U� j i D �U j i ;

so that U j i is also an eigenket of H .

c) We know that under parity Ox 7! � Ox, where Ox denotes the position operator. Indeed, since an operator
is determined by its action on a basis, we can take the basis fjxig and consider the action of � Ox� on
it.

� Ox� jxi D � Ox j�xi D �x jxi ;

so we must have � Ox� D �Ox. Similarly, momentum is odd under parity (dropping all the hats now):

Œx; �p�� D x�p� � �p�x D ��xp� C �px� D ��Œx; p�� D �i„;

so we must have �p� D �p. Now, we can write˝
n0l 0m0jpjnlm

˛
D
˝
n0l 0m0j��p��jnlm

˛
D �.�1/lCl

0 ˝
n0l 0m0jpjnlm

˛
:

Thus, this is exactly 0 for even values of l C l 0. Similarly, we have˝
n0l 0m0jLjnlm

˛
D .�1/lCl

0 ˝
n0l 0m0jLjnlm

˛
;

which is 0 for odd values of lC l 0, since L D x�p is even under parity (since both x and p are odd).

Exercise 5. Dilations. Do Exercise 2 on the Week 5 Worksheet: Another symmetry is called dilation
symmetry. Dilations are given by the transformation x! x0 D ecx, where c 2 R. Call its generator D, so
that e�icD is the corresponding unitary operator.
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Remark. In conformal field theory, the convention is to absorb the factor of i into D, so that e�cD is the
dilation operator.

a) Show that the infinitesimal transformation

eia�peicDe�ia�pe�icD

is given by 1C ca � ŒD;p�.
Hints: You can reduce to the situation where all the vectors are 1-dimensional (why?). There’s a slick
way to do this (use the Baker-Campbell-Hausdorff formula), but the brute force method does work.

b) Calculate ŒD;p�.
Hint: What coordinate transformation does the above correspond to? In other words, if you write it
in the form x! x0, what is x0?

a) You could write out all of these exponentials out to second order in a and c (note that it’s easier to
work in 1 dimension for this whole problem). Another (slicker) way to get the same answer is to use
the Baker-Campbell-Hausdorff formula, which says that given any two operators X and Y , we have

eXeY D eZ;

where

Z D X C Y C
1

2
ŒX; Y �C � � � :

The ellipsis above denotes third and higher order terms in X and Y , which we can ignore. Thus, use
BCH on

e�iape�icD D exp
�
�iap � icD C

ac

2
ŒD; p�C � � �

�
:

Then, use it on

eiapeicD D exp
�
iap C icD C

ac

2
ŒD; p�C � � �

�
:

Finally, use it on the product to get

eiapeicDe�iape�icD D exp.acŒD; p�C � � � /:

Now, expand out the exponential to get the answer:

1C acŒD; p�:

The same argument works in 3 dimensions by linearity, so we’re done.
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b) Note that the operation on the space that corresponds to the transformation given in (a) is:

x 7! ecx 7! ecxC a 7! xC e�ca 7! xC .e�c � 1/a:

Expanding the final term out to second order (since we went to second order in part (a)), we get

x 7! x � ca:

By (a), the infinitesimal transformation which corresponds to this is exactly 1C ca � ŒD;p�. Since p
is the generator of translations, we see that in order to generate a translation x 7! x � ca, we need
to take ŒD;p� D �p. If we had defined D to be the generator such that e�cD is the corresponding
unitary operator, then we get instead

ŒD;p� D ip;

and this is how it’s usually done in conformal field theory.


