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Exercise 1. When we solve the hydrogen atom, we assume that the nucleus is a point charge. In this
problem, we will compute the approximate change to the energy levels due to the finite size of the nucleus.
This is called the volume effect. Model the nucleus as a uniform sphere of radius r0A1=3, where A1=3 is the
number of nucleons (so this works for e.g. deuterium) and r0 D 1:3 � 10�13 cm.

a) What is the potential V.r/?
Hint: Outside the nucleus, V.r/ is just the Coulomb potential. Inside the nucleus, use Gauss’ law to
determine V.r/.

b) What is H 0, where H 0 is the hydrogen atom hamiltonian?

c) Argue that the ` D 0 states are only slightly affected by this perturbation.
Hint: Think about the small r behavior of the wavefunctions for s-states vs. ` > 0 states.

d) Calculate the correction to the energy levels for all states with ` D 0. Note that

Rn0.0/ D
2

.na0/3=2
;

where a0 D „2=me2.

e) For hydrogen, calculate the correction to the n D 1 and n D 2 states in eV.

f) Fine structure is of order ˛4mc2. Compare the magnitude of the volume effect to that of fine structure.

a) Outside the atom, the potential is just the Coulomb potential �Ze2=r . Inside the atom, Gauss’ law
says that

4�Q D

I
E � da;

where the charge at radius r < R D r0A1=3 is

Q D Ze
r3

R3
:
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Thus,

E.r/ D Ze
r

R3

inside the atom. To find the potential, we need to take

e

Z
E � dl D

Z R

1

Ze2

r2
C

Z r

R

Ze2r

R3
D �

3Ze2

2R
C
Ze2r2

2R3
:

Thus,

V.r/ D

‚
�
3Ze2

2R
C
Ze2r2

2R3
; r < R

�
Ze2

r
; r � R

:

b) Note that the unperturbed potential is �e2=r for all r , so that the perturbed potential is

H 0 D

�
�
3Ze2

2R
C
Ze2r2

2R3
C
Ze2

r
; r < R

0; r � R
:

c) The small r behavior of R.r/ is given by R.r/ � r`. Hence, ` > 0 states are concentrated away from
the origin, and so will not be very strongly affected by the size of the nucleus. On the other hand,
` D 0 states have a more uniform distribution, so they are much more affected.

d) Since R is tiny, we can approximate Rn0.r/ to be Rn0.0/ for r < R; indeed, this follows from the
small r behavior of the wavefunctionR.r/ � r`. Furthermore, the ` D 0 states are not degenerate, so
we can use first order nondegenerate perturbation theory. Lastly, notice that since we haveZ protons,
the Bohr radius is scaled as a0 ! a0=Z; hence, Rn0.0/! Z3=2Rn0.0/Thus,

hH 0i D
4Z4e2

.na0/3

Z R

0

 
�
3

2
RC

r2

2R3
C
1

r

!
r2 dr

D
2Z4

5.na0/3
e2R2

�
A2=3Z4

n3
� 10�8 eV:

e) For hydrogen, A D 1, so we get that the corrections are� 10�8 eV for the n D 1 state and� 10�9 eV
for the n D 2 state.

f) ˛ � 1
137

, mc2 � 511 keV, so ˛4mc2 � 1:45 � 10�3 eV, which is 5 orders of magnitude greater than
the volume effect!
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Exercise 2. Explain the physical origins of

a) fine structure

b) Lamb shift

c) hyperfine structure.

a) This is due to 1) a relativistic correction and 2) the spin-orbit coupling between the spin of the electron
and the orbital angular momentum of the proton (which creates a magnetic dipole moment). It is of
order ˛4mc2.

b) This is due to the quantization of the electromagnetic field; it’s of order ˛5mc2.

c) This is due to the coupling between the spin of the proton and of the electron; it’s of order m
mp
˛4mc2.

Notice that since m=mp � 1=2000, this effect is weaker than the Lamb shift.

Exercise 3. Griffiths 8.19 Find the lowest bound on the ground state of hydrogen using the variational
principle and an exponential trial wavefunction,

 .r/ D Ae�br
2

;

where A is determined by normalization and b is a variational parameter. Express your answer in eV.

First, we calculate A. We can totally ignore the angular part of the integration, since any integration
constant can be absorbed into A anyway. We thus getZ 1

0

jAj2e�2br
2

r2 dr D jAj2
p
�

4.2b/3=2
;

so

jAj2 D
4.2b/3=2
p
�

:

The hydrogen atom hamiltonian is

H D �
„2

2m
r
2
�

e2

4�"0r
:

Note that it’s important that we have the laplacian here, so the derivative with respect to r is not just @2=@r2.
Acting on  .r/ with this hamiltonian, we get

�
„2

2m
A
�
2br2 � 3

�
2be�br

2

�
e2

4�"0r
Ae�br

2

:

We want to calculate h jH j i to use the variational principle. We thus calculate

h jH j i D �
„2

2m
jAj2

Z 1
0

2br2e�2br
2

.2br2 � 3/ dr �
e2

4�"0
jAj2

Z 1
0

re�2br
2

dr:
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The first integral has two terms, each of which is a gaussian integral. You can look up how to do these
online or just plug them into e.g. Mathematica.

Note that gaussian integrals follow from the following calculation. Let

I D

Z 1
�1

dxe�ax
2

:

First, we can do a change of variables x ! x=
p
a, so that

I D
1
p
a

Z 1
�1

dxe�x
2

:

Then consider

I 2 D
1

a

Z 1
�1

dxe�.x
2Cy2/:

We can set r2 D x2 C y2, change to polar coordinates, and find

I 2 D
2�

a
�
I

2
;

where we get I=2 because the integration bounds for r are from 0 to1. Since I converges and is nonzero,
we have

I D

r
�

a
:

If we want to calculate integrals of the form Z 1
0

x2ne�ax
2

dx;

we can differentiate our form for I with respect to a:

d
da
I D �

Z
dx x2e�ax

2

D �

p
�

2a3=2
:

Similarly, differentiating twice with respect to a, we get

d2

da2
I D

Z 1
�1

dx x4e�ax
2

D
3
p
�

4a5=2
:

Returning to our calculation, we see that the second integral is easy, since the derivative of e�2br
2

is
�4bre�2br

2

, while the other two integrals are given by the calculations above. The result is

h jH j i D �
„2

2m
�
4.2b/3=2
p
�
� 2b

 
3
p
�

8.2b/5=2
� 2b �

3
p
�

4.2b/3=2

!
�

e2

4�"0
�
4.2b/3=2
p
�
�
1

4b

D�
„2
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�
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2
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�
�

e2

4�"0
�

r
8b
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D
3„2

2m
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e2

2�3=2"0

p
2b:
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Now, we want to minimize h jH j i to get the best possible bound on the ground state energy. Hence, take
the derivative with respect to b and set it equal to 0, so that

3„2

2m
D

e2
p
2

4�3=2"0
p
b
H)

H)b D

 
me2
p
2

6�3=2„2"0

!2
:

Plugging this back in, we find

h jH j i D �
me4

12�3„2"20
:

Plugging in some numbers, we get

Eg � �11:66 eV;

which is spectacularly close to the actual answer �13:6 eV.

Exercise 4. Griffiths 9.18 When we turn on an external electric field, it should be possible to ionize the
electron in an atom. A crude model for this is to suppose that a particle is in a very deep, one-dimensional
finite square well from x D �a to x D a.

a) What is the energy of the ground state, measured up from the bottom of the well? Assume that
V0 � „

2=ma2.

b) Introduce the perturbation H 0 D �˛x, where ˛ � eEext. Assume that ˛a � „2=ma2, and sketch
the total potential, noting that the electron can tunnel out in the direction of positive x.

c) Calculate


 D
1

„

Z
jp.x/j dx;

and estimate the time it would take for the particle to escape,

� D
2x1

v
e2
 ;

where x1 is the distance the electron must travel to reach the tipping point of the potential and v is
the speed of the electron.

d) Plug in some numbers, e.g. V0 D 20 eV, Eext D 7 � 10
6 V/m, a D 10�10 m. Calculate � , and compare

it to the age of the universe.

a) In the limit V0 � „2=ma2, this is just the ground state energy of the infinite square well of width 2a,
which is

„2�2

8ma2
:
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b) The potential is

V.x/ D

(
�˛x; x 2 .�a; a/

V0 � ˛x; x > a
:

This is a square well with a bottom that slopes downwards from left to right with a slope of �˛, and
a top beginning at x D a that slopes down from V0 with a slope of �˛. A particle of energy E could
then tunnel out after the point x0 D .V0 �E/=˛.

c) The limits of integration are from a to x0, and p.x/ D
p
2m.V0 �E � ˛x/. Thus,


 D
2
p
2m

3„˛
.V0 � ˛a �E/

3=2:

Since V0 � ˛aCE, we get that


 �
2
p
2m

e„˛
V
3=2
0 :

To compute � , assume that all energy is kinetic, so that v D �„=.2ma/, using the ground state energy
above. We also have that x1 is just x0�a, so that � � 1049 s, which is 32 orders of magnitude greater
than the age of the universe.


