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September 6, 2024

Exercise 0. This is done in Griffiths Chapters 1 and 3.

Exercise 1. A Hilbert space is mathematically defined as a complete vector space with an inner product. A
vector space with an inner product is complete if it includes not only all finite sums of vectors in a basis,
but also all limits of convergent sequences, i.e. given a sequence .vn/ of vectors in the Hilbert space, v is
the limit of the sequence if limn!1 kvn � vk D 0, where kvk D

p
v � v.

a) Consider a Hilbert space H that consists of all functions  .x/ such thatZ 1
�1

j .x/j2 dx <1:

Show that there are functions in H for which Ox .x/ D x .x/ is not in H .

Proof. Let  .x/ D
1

1C jxj
.

b) Consider the function space � in H which consists of all '.x/ that satisfy the set of conditionsZ 1
�1

j'.x/j2.1C jxj/n dx <1;

for any n 2 f0; 1; 2; : : :g. Show that for any '.x/ in �; Ox'.x/ is also in �. � is called the nuclear
space.

Proof. By the binomial theorem,Z 1
�1

j'.x/j2.1C jxj/n dx D
nX
iD0

Z 1
�1

j'.x/j2

 
n

i

!
jxji dx:

In particular, for each n, j'.x/j2jxjn has finite integral.
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c) The extended space �� consists of those functions �.x/ which satisfy

.�; '/ D

Z 1
�1

��.x/'.x/ dx <1;

for any ' in �, where . ; / is the inner product on H . Which of the following functions belong to �;
to H , and/or to ��?

Remark. The collection .�;H ; ��/ is called “rigged Hilbert space,” and this is a rigorous way to
include all the formalism (e.g. eigenvectors of position are delta functions, and hence can’t belong
to an L2 space) into the Hilbert space formulation of quantum mechanics. Note that � � H � ��.
Also, note that in order to sit in �, functions must vanish faster than any power of x as jxj ! 1.
Thus, as long as functions don’t diverge at1 more strongly than any power of jxj, they are in ��.
For more details, see Ballentine Quantum Mechanics, Chapter 1.

i) sin.x/

ii) sin.x/=x

iii) x2 cos.x/

iv) e�ax, a > 0.

v)
ln.1C jxj/
1C jxj

vi) e�x
2

vii) x4e�jxj

i) Clearly, sin.x/ … H , so it’s not in � either. But it is in ��, since it’s divergence at1 is not worse
than e.g. jxj.

ii) Try first to computeZ 1
�1

j sin.x/j2

x2
dx D 2

Z 1
0

j sin.x/j2

x2
dx D 2

Z "

0

j sin.x/j2

x2
dx C 2

Z 1
"

j sin.x/j2

x2
dx:

Now, the first term has finite integral, and the second term is less than
R1
"

2
x2 dx, which is finite.

Thus, it’s in H , and it follows that the function is in ��. It’s clearly not in �, since j sin.x/j2 does
not have a finite integral.

iii) Write Z 1
�1

x4 cos2.x/ dx D
Z 1
�1

x4.1C cos.2x// dx:

The second term has either (positive) infinite integral or is finite, but the first term is definitely C1,
so this function is not in H , so not in � either. It is in ��, since its divergence is not worse than a
power of x.

iv) Clearly, this isn’t in H . It’s also not in ��, since it diverges faster than any power of x as x ! �1.
In particular, the function e�jxj 2 �, but e�jxjCax does not converge.
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v) Clearly, this isn’t in �. It is in H , though. Explicitly, we could integrate by parts a few times to
reduce to Z 1

�1

�
ln.1C jxj/
1C jxj

�2
dx D 4

Z 1
0

1

.1C x/2
dx D 4:

vi) This has finite integral, so it’s in H and ��. It’s also in �, since any power of jxj times this function
is also finite (remember your gaussian integrals!).

vii) This is in �, since we can always integrate by parts to get back to an integral over e�jxj.

Exercise 2. Solve the eigenvalue problem for the 3-D isotropic, harmonic oscillator, whose hamiltonian is
H D p2=2mCm!2x2=2, where p2 D p � p, x2 D x � x is the 3-D dot product.

Remembering (or rederiving) the solution to the 1-D isotropic harmonic oscillator, the energy eigenvalues
are En D .nC 1=2/„! for n 2 f0; 1; 2; : : :g. But the 3-D one is the same except we have 3 directions for n
now, nx; ny; and nz. Thus, n D nx C ny C nz, for arbitrary nx; ny; nz 2 f0; 1; 2; : : :g.

Exercise 3. A particle of mass m is placed in a finite spherical well

V.r/ D

(
�V0; r � a

0; r � a
:

Find the equation that quantizes the energy (you don’t need to solve it), by solving the radial Schrödinger
equation with ` D 0. Explain how you could solve this equation and obtain the energies. Show that there is
no bound state if V0a2 < �2„2=8m. Hint: 1

Write the solution as

u.r/ D

(
A cos.kr/C B sin.kr/U; r � a

Ce�r CDe��r ; r � a
;

where

k D

r
2m

„2
.E C V0/

� D

r
�
2m

„2
E:

Now, the wavefunction is u.r/=r , so as r ! 0 the cosine solution blows up, which means A D 0. On the
other hand, as r !1, we see that C D 0, since e�r=r blows up there. Thus, we are left with

u.r/ D

(
A sin.kr/; r � a

Be��r ; r � a
;

1Recall that the radial Schrödinger equation is identical to the time-independent, 1-dimensional Schrödinger equation with
the wavefunction replaced by u.r/ D rR.r/ (where  .r; �; '/ D R.r/�.�/˚.'/) and potential Veff.r/ D V.r/C

„2`.`C1/

2mr2 .
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where I have renamed A and B . It follows that

u0.r/ D

(
kA cos.kr/; r � a

��Be��r ; r � a
:

Now, use continuity of the first derivative and the function at the boundary r D a to obtain two equations(
A sin.ka/ D Be��a

kA cos.ka/ D ��Be��a
:

Dividing the first equation by the second, we get the transcendental equation

tan.ka/ D �
k

p
V0 � k2

;

which can be rewritten in the form

tan.z/ D �
1qp

2mV0a

„z2 � 1

;

where z D ka. To solve it, we should graph the LHS and the RHS on the same graph and look for points
of intersection. These will be the allowed z values, hence the allowed k values, hence the allowed energies.
We can use the same method to see why there’s no bound state if V0a2 < �2„2=8m. Draw the graph of
tan.z/ superimposed with the graph of �1=

p
2mV0a2=„2z2 � 1. You will see that there can be no solution

if
p
2mV0a2=„2 < �=2, which implies that there can be no solution for 2mV0a2=„2 < �2=4, hence for

V0a
2 < �2„2=8m.

Exercise 4. Spin Representations.

a) Find the eigenvalues and eigenvectors of Sz.

b) Do the same for Sy , and write them in terms of j"i and j#i, the eigenvectors of Sz.

c) For a system of two spin 1/2 particles, starting with the “highest weight” state j""i, find all the states
in the triplet.
Hint: Apply the lowering operator.

d) For a system of two spin 1/2 particles, are there any other states than the ones you found in (c)? If so,
what are they? What is the action of S�; SC on them?

e) Describe how you would approach finding the Clebsch-Gordan coefficients for arbitrary spin systems.

a) This is done in Griffiths.
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b) We have

Sy D
„

2

"
0 �i

i 0

#
:

The characteristic polynomial is

„2

4

�
�2 � 1

�
;

so the eigenvalues are

�˙ D ˙
„

2
;

as expected. The associated eigenvectors are

�C $

"
1

1

#
�� $

"
1

�1

#
:

We can write these as

�˙ $
1
p
2

�
j"i ˙ j#i

�
:

c) This is done in Griffiths.

d) Also done in Griffiths.


