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Exercise 1. a) Write down the hamiltonian for two noninteracting identical particles in the infinite
square well. Write down the ground states for the three cases: distinguishable, fermions, bosons.
Recall that the one-particle wavefunctions are

Yn(x) = \/gsin (’%Tx) ,

with energies E, = n?n?h?/2ma*.

b) Find the first three excited states and their energies for each of the three cases (distinguishable,
fermions, bosons).

a) H= 12)—;; + 12)—?”2 + V(xl’XZ)’ where

0, x1,x€][0,q]

V(xi,x2) = {

00, X1 >aorxp;>a

Distinguishable is just ¥y (x1)¥;(x2) (ground), ¥;(x1)¥2(x2) (Ist and 2nd excited, along with the
same with x; <> Xx5), and ¥, (x1)¥2(x2) (3rd excited). Their energies are 2E,, 5E, 5E;, and 8 Ey,
respectively.

b) For bosons, we get almost the same thing. The 1st and 2nd excited states now merge into (1 (x1)¥2(x2)+
V2 (x1)¥1(x2))/+~/2. Thus, the ground state is the same, the 1st excited state is the one in the
previous sentence, the second excited state is ¥, (x1)¥2(x3), and the third is (Y3(x1)¥1(x2) +
V1 (x1)V3(x2))/ /2. Their energies are 2E;, 5E,, 8E1, and 10E,, respectively.

c¢) For fermions, any manifestly symmetric state is now not allowed. Thus, the ground state is (V¥ (x1) V2 (x2)—
Vo (x1)V1(x2))/ /2, the first excited is (V1 (x1)¥3(x2) — ¥3(x1)¥1(x2))/ /2, the second excited is

(Y2 (x1)¥3(x2) — ¥3(x1)¥2(x2))/~/2, and the third excited is (Y1 (x1) V4 (x2) — ¥4 (x1)¥1(x2))/ /2.
Their energies are 5E,, 10E, 13E,, and 17E}, respectively.

Exercise 2. In Exercise 1, we ignored spin (or at least supposed that the particles are in the same spin state).



a)

b)
a)

b)
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Do it now for particles of spin 1/2. Construct the four lowest-energy configurations, and specify their
energies and degeneracies.

Do the same for spin 1.

If you remember (or look up) the triplet and singlet states, you’ll find that there are 3 symmetric ones
and 1 antisymmetric one. Hence, we can pair a symmetric wavefunctiton with the antisymmetric spin
state to get an antisymmetric state; conversely, we can pair an antisymmetric wavefunction with a
symmetric spin state (in 3 different ways) to also get an antisymmetric state. Thus, the ground state for
spin 1/2 particles is ¥1(x1)¥ (x2) paired with the singlet. It has multiplicity 1 and energy 2E;. The
next highest state is (Y1 (x1)¥2(x2) — ¥ (x1)¥1(x2))/+/2 paired with the triplet or (Y1 (x1)¥2(x2) +
V2 (x1)¥1(x2))/ /2 paired with the singlet. Hence, these states all have energy 5E; and multiplicity
4. Continuing with the game, the next highest energy state is ¥, (x1)¥2(x,) paired with the singlet.
This has multiplicity 1 and energy 8 E;. Finally, the 3rd highest energy states are (1 (x1)V¥3(x2) —
¥3(x1)¥1(x2))/+/2 paired with the triplet or (1 (x1)¥3(x2) + ¥3(x1)¥1(x2))/~/2 paired with the
singlet, which again have multiplicity 4 and energy 10E;.

To play the same game, we want to find the states that are antisymmetric and those that are symmetric.
The accessible states have m; € {—1,0, 1}, so there are six possible symmetric combinations. Three
are given by m; = m,, and the other three are given by symmetrizations of the states corresponding
to m; # m,, where m; denotes the spin of particle i. There are three antisymmetric states, which
are given by the antisymmetrizations of the states corresponding to m; # m, (the states with equal
m; cannot be antisymmetrized). Other than this, the game is the same as in part (a). We get the same
wavefunctions, but the multiplicities are instead 6, 9, 6, 9.

Exercise 3. Symmetries of Many-Particle States.

a)

b)

d)

Consider a system of two identical particles. Define a permutation operator via

Pz la) [B) = [B) |a) .

Show that P;,? = 1, the identity operator, and that the eigenvalues of P, are #=1. Thus, show that
its eigenvectors are either totally symmetric or antisymmetric.

Generalize part (a) to systems of three identical particles. You should find that you have six per-
mutation operators. Assuming the hamiltonian is invariant under each of these operators, is there a
complete set of common eigenvectors?

Griffiths 5.8. In the situation of (b), suppose that the particles have access to three distinct one-
particle states, |a), |b), and |c). For example, |abc) is an allowed state, as is |aaa). How many
states can be constructed if they are (i) bosons or (ii) fermions?

Suppose we have a single-particle fermion state |«) and a single-particle bosonic state |8). Just like
for the harmonic oscillator, we can define creation operators C," and a ﬂT, such that given any state

V),

Co' [¥) = o)
ag ly) =By).



e)

b)
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The operators C, ' and a lgT have the following properties.

Co lay) =)
ag |BY) =)
Cy |0) = ap |0) =0
c,c,” =0
{Ca, Cott = CoCyT + CorTCo =61
{C'.CoTh =0

[ag, a,ﬂ] =01
[aﬂT, Clﬂ/T] =0,

where |0) denotes a state with no particles at all. To what extent is a bound pair of fermions equivalent
to a boson?

Hint: Use the symmetries of many-particle states and the (anti-)commutation relations of the cre-
ation/annihilation operators constructed in parts (a)-(d). What algebra must the creation/annihilation
operators for the bound pair satisfy?

Prove the properties given in (d).

Hints: It may be useful to use the notation ~ « for the « “orbital” being unoccupied. To show the
first relation for C,, try to first show that C, |@) = |0). For the anti-commutator relations, consider
separately the cases o« # « and whether the o or &’ orbitals are occupied.

P1,? = 1 follows by just applying it twice to the state. Suppose |A) is an eigenvector of P15 with
eigenvalue A € C. Then

A2 =1,

so A € {—1,1}. An eigenvector with eigenvalue 1 will be symmetric, while an eigenvector with
eigenvalue —1 will be antisymmetric.

We want to consider exchanges of three particles, so we will have 3! = 6 distinct permutations. There
is the identity operator, pairwise interchange, Pi,, P»3, P13, and the two cyclic permutations P53,
P1»32. Since the permutation operators are not mutually commuting, we don’t have a complete set
of common eigenvectors. Instead, the space divides into four invariant subspaces, which have the
property that any vector in an invariant subspace is transformed by the operators into a vector which
is in the same subspace. Two of the subspaces are partially symmetric (and hence can be ignored),
while the other two are the symmetric subspace and the antisymmetric one.

For bosons we have 10 = 6 + 3 + 1 states. 6 states are symmetrizations of states of type (x, x, y),
with x,y € {a,b,c} and x # y. We get 3 - 2 states of this type. The other type is (a, b, ¢), and
there is only one state of this kind since we need to include all possible permutations to symmetrize.
Finally, there are 3 states of the form (x, x, x).

For fermions, only 1 state is possible, since any state with repeating letters cannot be anti-symmetrized.
Hence, the only type of allowed state is the anti-symmetrization of (a, b, ¢).



d)
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First some comments. In the Standard Model, quarks (which are fermions) can bind together to form
particles. Some of these obey fermionic statistics, like the proton, while some obey bosonic statistics,
like the pion. So two distinguishable fermions can bind together to form a boson in principle, and
this is really what happens in our world! I say distinguishable here because in the case of quark pairs
they are always different kinds of quarks. Let’s see how this works out from the formalism.

If we consider only the single bound state by itself, i.e. the one-particle state, then there is no differ-
ence. Indeed, the spin is an integer, and there is no other requirement for bosons until we consider
multi-particle states. Thus, consider a two-particle system made up of two such bound pairs. Under
interchange of the pairs, we are effectively interchanging two fermions twice; thus, the composite
system will be multiplied by (—1)? = 1. It follows that under interchange of pairs, the system obeys
bosonic statistics. This clearly generalizes to systems of many pairs. Consider now the commutation
relations between the creation and annihilation operators which make such a state. We need to con-
sider the algebra generated by Dyy = CoC. and Dy ™ = C,TCy/T. Notice that Dyg/T # Dy ™!
First of all, note that (DT)?2 = D? = 0, which is distinct from the bosonic creation operators. What
about (anti-)commutators? Consider

[Dlsz DIZ]'
This is given by (after using the identity [4, B] = {4, B} —2BA)
c,fc, —20,7c,6,6 - 20T C,6 T, — 20,6,C G + G601 - 20,6, TG G

Now, use the fact that C; and C; anti-commute, as do C;Tand C jT, to find that the first two terms
with 4 operators cancel. On the other hand, notice that the last two terms with 4 operators are

—2C,{C,T, GG = 0.
Hence, we’re left with
C.'Cy + GG,

Clearly, this is different than the algebra for the bosonic creation/annihilation operators! Already, we
can say that we have something that’s not quite a boson, just based on how we create and annihilate
these new particles. This begs the question: Why in the Standard Model do quarks form actual
bosons? That’s because the Standard Model is a quantum field theory; everything is not so simple as
it seems from this calculation!

Consider the state Cy |a) = ((| Co")T. Note that the state («| C, T satisfies
(] Co" W) = So.y-

Hence, ({(«| C,")T = C4|) = |0). If instead of |«) we use |ay), we end up with the desired
relation.

The proof for ag is identical.
We have that

(01 Co" ly) =0
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for any . Hence,
(01C" =0 = Co]0) = (0] G =0.

The property (C,")? = 0 follows from the fact that fermions are antisymmetric under interchange.

Consider first the case & # «’. Then it’s clear we get 0 if either the « orbital is empty or the &’ orbital
is occupied. So it’s sufficient to consider its effect on a vector |« --- ~ «’). This gives

(Cof . Cl -+ ~d) =Cylda--)+CyT |- ~a ~ )
=—Cylaad ) + Cyt |- ~a ~ )
=—la'-~a)+ o ~a) = 0.
For the case @ = o/, consider separately the cases of the o orbital being occupied or empty. We have
(G Cl o)y =04+ Cf |- ~a) =a--)
(Gl Ca} - ~a) = Cola) +0 =] ~a).
Thus, {C, ", Cy} is the identity operator.

The key to figuring out this relation is to show that the creation operators and annihilation operators
are the same as those for the harmonic oscillator. For example, consider a ,cﬁ. If it acts on |0), we get
|B), but if it acts on |B), we get something proportional to |28), since we can have multiple bosons
in the same state. The key to figuring out this proportionality factor is to demand that a ﬂa g acts as
the number operator for the state 8. So

aﬂTaﬁ |ni,na,....ng,...) =nglni,na,....,ng,...).
From the relation
(nl,nz,...,nﬂ,...|a5Ta,g |ni,na,....ng,...) =ngy,
we find
aglni,na,....ng,...) = nglni,ny,....ng—1,...).

Now, we can determine the proportionality factor for ag’. Taking

aﬂalgT|n1,n2,...,nB,...) = /ng+ lc|ny,na, ... ng,...),

where c is the proportionality factor to be determined. Hit this again with a 5T to find

agtagagt|ny,ny, ... .ng,...) = ng +1c?|ni,na, ... ,ng+1,...).
We can rewrite the LHS of this equation by noting that the first two operators are the number operator,
so that
a,glra,ga,glr ni,na,....ng,...) =(mg+ clny,na,....ng+1,...).
Thus,
¢ = Jup 1.

This immediately gives the desired relation, since it is that satisfied by the harmonic oscillator algebra.
Whew!

The last identity follows since interchange of the two bosonic states which we create will not force a
sign change, so the commutator will vanish.



