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Exercise 1. Griffiths 5.5.

a) Write down the hamiltonian for two noninteracting identical particles in the infinite square well.
Write down the ground states for the three cases: distinguishable, fermions, bosons. Recall that the
one-particle wavefunctions are
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with energies En D n2�2„2=2ma2.

b) Find the first three excited states and their energies for each of the three cases (distinguishable,
fermions, bosons).

Exercise 2. Griffiths 5.9. In Exercise 1, we ignored spin (or at least supposed that the particles are in the
same spin state).

a) Do it now for particles of spin 1/2. Construct the four lowest-energy configurations, and specify their
energies and degeneracies.
Hint: Recall that the total state vector for a boson (resp. fermion) must be symmetric (resp. anti-
symmetric). If a boson or fermion state vector is a product of two vectors (e.g. a spatial state vector
and a spin state vector), can these components be symmetric, anti-symmetric, or both?

b) Do the same for spin 1.
Hint: You can do this without having to use any Clebsh-Gordan coefficients!

Exercise 3. Symmetries of Many-Particle States.

a) Consider a system of two identical particles. Define the operator P12 via

P12 jai jbi D jbi jai :

Show that P122 D 1, the identity operator, and that the eigenvalues of P12 are ˙1. Thus, show that
its eigenvectors are either totally symmetric or antisymmetric. We call P12 a permutation operator.
In this case, there are only two such operators: P12 and P122 D 1.
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b) Generalize part (a) to systems of three identical particles. You should find that you have six permuta-
tion operators (note that the identity is a permutation operator). Assuming the hamiltonian is invariant
under each of these operators, is there a complete set of common eigenvectors?

c) Griffiths 5.8. In the situation of (b), suppose that the particles have access to three distinct one-
particle states, jai ; jbi ; and jci. For example, jabci is an allowed state, as is jaaai. How many
states can be constructed if they are (i) bosons or (ii) fermions?

d) Suppose we have a single-particle fermion state j˛i and a single-particle bosonic state jˇi. Just like
for the harmonic oscillator, we can define creation operators C˛� and aˇ �, such that given any state
j i,
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The operators C˛� and aˇ � have the following properties. You don’t need to prove them.
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where j0i denotes a state with no particles at all. To what extent is a bound pair of fermions equivalent
to a boson?
Hint: Use the symmetries of many-particle states and the (anti-)commutation relations of the cre-
ation/annihilation operators constructed in parts (a)-(d). What algebra must the creation/annihilation
operators for the bound pair satisfy?

e) Challenge. Prove the properties given in (d).
Hints: It may be useful to use the notation � ˛ for the ˛ “orbital” being unoccupied. To show the
first relation for C˛, try to first show that C˛ j˛i D j0i. For the anti-commutator relations, consider
separately the cases ˛ ¤ ˛0 and whether the ˛ or ˛0 orbitals are occupied.


