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Exercise 1. When we solve the hydrogen atom, we assume that the nucleus is a point charge. In this
problem, we will compute the approximate change to the energy levels due to the finite size of the nucleus.
This is called the volume effect. Model the nucleus as a uniform sphere of radius roA'/3, where A'/3 is the
number of nucleons (so this works for e.g. deuterium) and ry = 1.3 - 10713 cm.

a) What is the potential V' (r)?

Hint: Outside the nucleus, V(r) is just the Coulomb potential. Inside the nucleus, use Gauss’ law to
determine V' (r).

b) What is H’, where HY is the hydrogen atom hamiltonian?

c) Argue that the £ > 0 states are only slightly affected by this perturbation.
Hint: Think about the small » behavior of the wavefunctions for s-states vs. £ > 0 states.

d) Calculate the correction to the energy levels for all states with £ = 0. Note that

Riof0) = —
where ag = h?/me?.
e) For hydrogen, calculate the correction to the n = 1 and n = 2 states in eV.

f) Fine structure is of order a*mc?. Compare the magnitude of the volume effect to that of fine structure.

a) Outside the atom, the potential is just the Coulomb potential —Ze?/r. Inside the atom, Gauss’ law

says that
4 Q = %E - da,
where the charge at radius ¥ < R = rgA'/3 is
3
r
Q = Zeﬁ
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Thus,

r
E(r) = Zeﬁ

inside the atom. To find the potential, we need to take

/E it /R Ze? N /’ Ze%r 3Ze? N Ze2r?
e -dl = - = — .
. 2 . R 2R ' 2R

Thus,

3Ze* Zeé*r?
— 5 + R r<anR
vin=1 28
_ r>R
-

b) Note that the unperturbed potential is —e?/r for all r, so that the perturbed potential is

3Ze? L Ze?r? n Ze? <R

pa— y r
H' ={ 2R = 2R3 r :
0, r>R

¢) The small r behavior of R(r) is given by R(r) ~ r¢. Hence, £ > 0 states are concentrated away from
the origin, and so will not be very strongly affected by the size of the nucleus. On the other hand,
£ = 0 states have a more uniform distribution, so they are much more affected.

d) Since R is tiny, we can approximate R,(r) to be R,o(0) for r < R; indeed, this follows from the
small 7 behavior of the wavefunction R(r) ~ r¢. Furthermore, the £ = 0 states are not degenerate, so
we can use first order nondegenerate perturbation theory. Lastly, notice that since we have Z protons,
the Bohr radius is scaled as ag — ao/Z; hence, R,0(0) — Z3/2R,,(0)Thus,

() 4742 /R 3R+ r? +1 24
= - — t+—|r-ar
(nag)3 Jo 2 2R3 r

_ 2z¢ 2R
5(nao)?

A2/3z4

N 1073 eV,

e) For hydrogen, A = 1, so we get that the corrections are ~ 1078 eV for the n = 1 state and ~ 10™° eV
for the n = 2 state.

f) a ~ %, mc? ~ 511 keV, so a*mc? ~ 1.45-1073 eV, which is 5 orders of magnitude greater than

the volume effect!
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Exercise 2. Explain the physical origins of
a) fine structure
b) Lamb shift

c¢) hyperfine structure.

a) Thisis due to 1) a relativistic correction and 2) the spin-orbit coupling between the spin of the electron
and the orbital angular momentum of the proton (which creates a magnetic dipole moment). It is of

order a*mc?2.

b) This is due to the quantization of the electromagnetic field; it’s of order a°mc?.

c) This is due to the coupling between the spin of the proton and of the electron; it’s of order mﬂpa“mcz.
Notice that since m/m, ~ 1/2000, this effect is weaker than the Lamb shift.

Exercise 3. Griffiths 7.45. Stark Effect in Hydrogen. When an atom is placed in a uniform electric field
E.«. the energy levels are shifted. This is known as the Stark effect. You’ll analyze the Stark effect for the
n = 1 and n = 2 states of hydrogen. Suppose E¢y = EexZ, so that

/
H' = eE.rcosb

. ) . ) 2
is the perturbation of the hamiltonian for the electron, where H° = ;; _ e 1
m 4meg r

a) Show that the ground state energy is unchanged at first order.
b) How much degeneracy does the first excited state have? List the degenerate states.

c) Determine the first-order corrections to the energy. Into how many levels does E, split?

Hint: All W;; are 0 except for two, and you can avoid doing all of the zero integrals in this problem
by using symmetry and selection rules. You’ll need the following

I _5,r _ 3
/2 r/2a
=——uq —e \/ —cos 6
Va0 2/6 a 4

1 3 r 1
_ -3/2 —r/2a
=—a 1—— e —_—.
V200 V2 ( Za) 21

d) What are the “good” wavefunctions for (b)? Find the expectation value of the electric dipole moment
in each of these states.

a) The ground state is spherically symmetric, so clearly (H’) = 0. (Also, you can recall that Yy is a
constant).

b) There are 4 degenerate states, Y299, ¥21m, Where m € {—1,0, 1}.
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c) First, note that all diagonal elements are 0. This is because a diagonal element will have an even
angular part, cosine is even, and the measure will have a sine, which is odd. Since the integral is over
an even interval, it will integrate to 0. The integral of y,9¢ with any of the m # 0 states will be 0,
since the integral of e**¢ will be 0. Likewise, this kills the integrals of V19 with any of the m # 0
states. Finally, we’re left with the integral of ¥,1; with ¥,;_;. But this will be O by the selection rule
that £ + ¢/ must be odd for the matrix element of an operator with odd parity (like z = r cos 6). We
are thus left with one integral, that between the two states given in the hint. Let’s do this integral. It

will equal
ESX — .
B ex / d9/ drr# ( ——)e /e c0s2 0 sin ) =
16a 7{

Eev 2 _
= t-—/ drrt (1= 2 )era,
~ 8a* 3, 2a

The integral over r can be done by noticing the following.

o0

o0
f drrte "4 = _qrteT/e
0

o0
+ an / drr*le7/e,
0 0

Notice that the boundary term vanishes, and we get the same integral multiplied by an with the
exponent of r reduced by 1. Repeating this process, we’ll be left with

(o,]
a”n!/ e = g"tip,
0

Thus, our original integral is equal to

eEext

o —— (4la* —60a) = —3aeE.y.

Denoting £ = —3aeE.,, we want to find the eigenvalues of a 4 x 4 matrix all of whose terms are 0
except for a 2 x 2 minor which is of the form

0 ¢
[E 0} - (1
The eigenvalues of this matrix are ££, and its eigenvectors are

.
|:_1 <~ —£.

Thus, the energy E» splits into three energies. One corresponds to the states ¥/,;,, which aren’t Y519
or Ypo0. These states have the same energy as for unshifted hydrogen. 210 + Y200 has energy which
is shifted up by &, while Y19 — V200 has energy shifted down by & (so up by 3ae Ecx,).
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d) The good wavefunctions are given in the previous paragraph. To find (ez), the expectation value of
the electric dipole, we again have to compute some integrals. But since z = r cos 6, we have already
done them in (c)! Consider first

1

ﬁ(lﬂzm + ¥200)-

Then, since H' = ez E.,, we have

(V210 H'[Y200)

= — 3ae.

{ez) =

ext

On the other hand, if we instead consider the state

%(%10 — V¥200),

we get (ez) = 3ae.

Exercise 4. Zeeman Effect. In this problem you will do a relaistic calculation of the effect of magnetic
fields on the n = 2 states of hydrogen. We will allow the magnetic field to take on any value, so that we
won’t assume that the Zeeman term is necessarily small or large in comparison to the fine structure terms.
It will be helpful to use units where m = i = ¢ = 1, called atomic units. It will also be helpful to use the
dimensionless variable

B

X = —,
B,

where B is the external magnetic field and B; is « times the strength By = 1 magnetic field in atomic units,

e’'m?

- h5c

:OCBO

B,

m?e®
Rt
Note that I am using gaussian units for the formulas above.
For this problem, the hamiltonian H?° is the hydrogen atom hamiltonian and

=

H'=H, + Hso + Hz.

a) Make a table which shows which of the operators L2, Ly, Ly, L,, S?, Sy, Sy, Sz, J2, Jx, Jy,, J, com-
mute with H° and which commute with H!.

b) Use the table from (a) to find a basis in the 8-dimensional subspace of the n = 2 degenerate energy
levels of H° for which the perturbing hamiltonian will be as diagonal as possible.
Hint: After choosing this basis, there should be only 16 off-diagonal matrix elements which you need
to calculate.
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Find all eight levels for the n = 2 states of hydrogen perturbed by H.

Hints: You will need to use a Clebsch-Gordan table to calculate some of the matrix elements. You
are allowed to (and should!) use a computer algebra program (e.g. Mathematica) to calculate the
eigenvalues and eigenvectors of the 8 x 8 matrix you obtain while solving this problem.

Expand the results of (c) for small x, and show that they agree with the energy levels for the weak
field Zeeman effect. Do the same for large x, and show that they agree with the energy levels for the
strong field Zeeman effect.

L7 Ly L, L, S S, S, S, JZ Jx J, J.
H Y Y Y Y Y Y Y Y Y Y Y Y
Ho|Y N N N Y N N N Y Y Y Y
Hh|Y Y Y Y Y Y Y Y Y Y Y Y
H,|Y N N Y Y N N Y N N N Y

It looks like the n, £, j, m; basis is the best choice here, since the only off-diagonal elements will be
for different values of j. Since j € {%, %}, there are 4 -4 = 16 off-diagonal elements, where the first

4 is from j = 1/2 (2 from £ = 0 and 2 from £ = 1) and the second 4 from j = 3/2 (when £ can
only be 1).

The 8 x 8 matrix is below, where the basis is

{16, j,mj)} ={10,1/2,-1/2) ,10,1/2,1/2) ,|1,1/2,-1/2) ,[1,1/2,1/2),
11,3/2,-3/2).]1,3/2,—1/2) ,|1,3/2.1/2) . |1,3/2,3/2)}.

Note that the matrix elements are in this order, e.g. [0,1/2,—1/2) corresponds to the first col-
umn/row. The way you calculate these matrix elements is by using the Clebsch-Gordan table for
£ = 1and s = 1/2, which allow you to write the states as a linear combination of the eigenvectors
of S, (since Hz < J, + S,).

a’x
Ers — =~ 0 0 0 0 0 0
a’x
0 Ers + —- 0 0 0 0 0
a’x a’x
0 0 Epg — —— 0 0 — 0
FS 6 . 3\/5 .
(07 % oa~X
0 0 0 Epg + —— 0 0 —
Fs 6 32
0 0 0 0 Eps — o%x 0 0
0 o 0 0 Fog— O 0
3ﬁ FS 3
0 0 0 o 0 Erg s &%
3ﬁ FS 3
0 0 0 0 0 0 0 Ers + a2x




where
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E¥s

_a? (3 2
S 2.24\4 j4+1)2

is the fine structure correction. Since this depends only on j, in the first 4 terms of the diagonal it is

In the last 4 terms, it is

Ers =

502
128"

0(2

128

We can change our basis to obtain the following matrix instead

S O o O

0

aZx

Eps — ——

2

0
2

a~X

0

0

0
EFS — O[ZX
0

0

0

Note that the order of our basis is now

{16, j.m;)}y = {10.1/2,-1/2).10.1/2.1/2) ,[1.3/2,-1/2) . [1.3/2.3/2)

0

0
0

Ers + a?x

0 Ers —

0 0
0 0
0 0
0 0
aZx a?x

6 342
aZx £ a?x
35 FS 3
0 0
0 0

32

11,3/2,-3/2).]1,1/2,-1/2) ,|1,3/2.1/2) . |1,1/2,1/2)}.

)

S o o O

a~xX

372
a?x
Eps + —

Since this matrix is block diagonal with the largest size of a minor 2 x 2, we need only compute
eigenvalues and eigenvectors of (2 x 2)-matrices. In particular, the eigenvalues are the first 4 terms
on the diagonal, and the eigenvalues of the other two (2 x 2)-minors of the above matrix. So the first
four eigenvalues are.

502 o’x
128 2
502 o?x
128 2
2
o
- —a%x
128
a? )
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The next four are

3 X 1 1
2l —— 4+ — [14+32x(=+8
o 128+4+64 + 32x 3+x
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A plot of the solutions is below.
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-0.2

Figure 1: These energy shifts are measured relative to the n = 2 unshifted hydrogenic energies, which are
all —1/2 - 22 in atomic units. The top lines (those originating at the higher value of AE/a? at x = 0)
correspond to the j = 3/2, £ = 1 states, while the bottom lines correspond to the j = 1/2 states. Note
that the energy levels cross as x increases. The fine structure splitting is overwhelmed by the Zeeman
splitting at relatively small values (i.e. x ~ 0.03 instead of x ~ 1, as one might have expected) due to
the quantum numbers introducing additional dimensionless factors which naive scaling arguments would
ignore. Note that x ~ 0.03 corresponds to a magnetic field of about 0.4 T, which is accessible in modern
laboratories.
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d) Now, the weak Zeeman energy correction (not including the fine structure correction) in atomic units
is

i 1, j=34=0

AE =a’xmj( %, j=14=1.
2 - __ 3 _

3 J=al=1

We can expand the eigenvalues for small x to find the same eigenvalues as for the Zeeman correction
plus the fine structure correction. This only needs to be done for the four eigenvalues with square

Troots:
3 X 1 1 3 X 1 16x 5 X
S P RNIEY SV SRy 1o [PUNI Y (D) R S
128 4 64 3 128 4 64 3 128 6
3 x+1 1432 1+8 N 3 x+1 ! 16x . 1 X
128 4 64 N3 8 T 1 T @ 3 )T 7128 3
3 +x 1 1432 1—|—8 3 +x 1 1+16x _ 5 +x
128 "4 64 N3 T8 T4 T wa 3 )7 128 6
S P N SHEL G Y SUVIELL )
128 47" 64 3T T8 T 1 T e 3 )7 712873

Clearly, these match the A E values above.

We will do the strong field Zeeman splitting in the case that we can ignore Hgg entirely. In this case,
we have the eigenvalues («? omitted everywhere)

I
| =N =

|
=

=

|
o o =

| =

where the last four follow from expanding

1
\/1 + 32x (:|:§—|—8x) ~ +/32.8x2 = 16x.

These agree with the strong Zeeman effect when we ignore fine structure.



