Week 2 Worksheet 137A Review; QM in 3D (and some spin)

Jacob Erlikhman

1/16/24

Exercise 0. Warm up.

- a) What is the momentum operator in the position representation in three dimensions? *Hint*: What is the canonical commutation relation?
- b) From (a), what is $p^2 = \mathbf{p} \cdot \mathbf{p}$ in three dimensions in the position representation?
- c) Starting from the time-dependent Schrödinger equation in three dimensions for a potential $V(\mathbf{x})$, derive the time-independent version. *Hint*: Use separation of variables.

Exercise 1. Rigged Hilbert Space. A Hilbert space is mathematically defined as a *complete* vector space with an inner product. A vector space with an inner product is **complete** if it includes not only all finite sums of vectors in a basis, but also all limits of convergent sequences, i.e. given a sequence (v_n) of vectors sums of vectors in a basis, but also all limits of convergent sequences, i.e. given a sequence (v_n) or in the Hilbert space, v is the **limit** of the sequence if $\lim_{n\to\infty} ||v_n - v|| = 0$, where $||v|| = \sqrt{v \cdot v}$.

a) Consider a Hilbert space *K* that consists of all functions $\psi(x)$ such that

$$
\int_{-\infty}^{\infty} |\psi(x)|^2 \, \mathrm{d}x < \infty.
$$

Show that there are functions in *H* for which $\hat{x}\psi(x) = x\psi(x)$ is not in *H*.

b) Consider the function space Ω in *K* which consists of all $\varphi(x)$ that satisfy the set of conditions

$$
\int_{\infty}^{\infty} |\varphi(x)|^2 (1+|x|)^n \, \mathrm{d}x < \infty,
$$

for any $n \in \{0, 1, 2, \ldots\}$. Show that for any $\varphi(x)$ in Ω , $\hat{x}\varphi(x)$ is also in Ω . Ω is called the **nuclear** space.

Hint: Binomial theorem.

c) The **extended** space Ω^{\times} consists of those functions $\chi(x)$ which satisfy

$$
(\chi,\varphi)=\int_{-\infty}^{\infty}\chi^*(x)\varphi(x)\,\mathrm{d}x<\infty,
$$

for any φ in Ω , where $($, $)$ is the inner product on \mathcal{H} . Which of the following functions belong to Ω , to \mathcal{H} , and/or to Ω^{\times} ?

Hints: Note that in order to sit in Ω , functions must vanish faster than any power of x as $|x| \to \infty$. Thus, as long as functions don't diverge at ∞ more strongly than any power of |x|, they are in Ω^{\times} .

Remark. The collection $(\Omega, \mathcal{H}, \Omega^{\times})$ is called "rigged Hilbert space," and this is a rigorous way to include all the formalism (e.g. eigenvectors of position are delta functions, and hence can't belong to an L^2 space) into the Hilbert space formulation of quantum mechanics. Note that $\Omega \subset \mathcal{H} \subset \Omega^\times$ (it's easy to see this once you realize $\mathcal{H} = \mathcal{H}^{\times}$). For more details, see Ballentine *Quantum Mechanics*, Chapter 1.

i) $sin(x)$ ii) $\sin(x)/x$ iii) $x^2 \cos(x)$ iv) e^{-ax} , $a > 0$. v) $\ln(1 + |x|)$ $\overline{1+|x|}$ vi) e^{-x^2} vii) $x^4e^{-|x|}$ viii) $\delta(x - a)$ for a real.

Exercise 2. Harmonic Oscillator. Solve the eigenvalue problem for the 3-D isotropic, harmonic oscillator, whose hamiltonian is $H = p^2/2m + m\omega^2 x^2/2$, where $p^2 = \mathbf{p} \cdot \mathbf{p}$, $x^2 = \mathbf{x} \cdot \mathbf{x}$ is the 3-D dot product. *Hint*: There's a way to do this without any calculations (if you remember the 1-D oscillator)!

Exercise 3. A particle of mass m is placed in a finite spherical well

$$
V(r) = \begin{cases} -V_0, & r \le a \\ 0, & r \ge a \end{cases}.
$$

Find the equation that quantizes the energy (you don't need to solve it), by solving the radial Schrödinger equation with $\ell = 0$. Explain how you could solve this equation and obtain the energies. Show that there is no bound state if $V_0 a^2 < \pi^2 \hbar^2 / 8m$.

Hint: Recall that the radial Schrödinger equation is identical to the time-independent, 1-dimensional Schrödinger equation with the wavefunction replaced by $u(r) = rR(r)$ (where $\psi(r, \theta, \varphi) = R(r) \Theta(\theta) \Phi(\varphi)$) and potential $V_{\text{eff}}(r) = V(r) + \frac{\hbar^2 \ell(\ell+1)}{2mr^2}$ $\frac{\ell(\ell+1)}{2mr^2}$.

Exercise 4. Spin Representations. a) Find the eigenvalues and eigenvectors of S_z .

- b) Do the same for S_y , and write them in terms of $|\uparrow\rangle$ and $|\downarrow\rangle$, the eigenvectors of S_z .
- c) For a system of two spin 1/2 particles, starting with the "highest weight" state $|\uparrow \uparrow \rangle$, find all the states in the triplet. *Hint*: Apply the lowering operator.
- d) For a system of two spin 1/2 particles, are there any other states than the ones you found in (c)? If so, what are they? What is the action of S_-, S_+ on them?
- e) Describe how you would approach finding the Clebsch-Gordan coefficients for arbitrary spin systems.