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Exercise 1. Linearized Gravity. In this exercise, you will carefully work through the derivation of lin-
earized gravity. Recall that in this regime, we suppose the metric has the form

gij D �ij C 
ij ;

where �ij is the Minkowski metric and 
ij is a small perturbation. Linearized gravity means we ignore all
contributions to relevant quantities that are of order 
2. By convention, raising and lowering of indices is
done with � instead of with g.

a) Check that the inverse metric is

gij D �ij � 
 ij :

b) The Christoffel symbols and Ricci tensor are
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where e.g. � k
jk D

P
k �

k
jk

is the contraction. Compute the Christoffel symbols in linearized gravity,
and show that the Ricci tensor to first order in 
 is
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where 
 D 
kk is the trace of 
 and @2 D @i@i is the d’Alembertian.
Hint: Argue immediately that the � 2 terms in Rij are 0, without doing any computations with them!

c) The Einstein tensor to first order in 
 is
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where R D Ri i is the Ricci scalar. Define

N
ij D 
ij �
1

2
�ij
;

and substitute this into the Einstein tensor to find
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Hints: Show first that

@l@j
il C @
l@i
jl D @

l@j N
il C @
l@i N
jl C @i@j
:

Next, show that

�ij@
l@k
kl D �ij@

l@k N
kl C
1

2
@2
:

d) General relativity has gauge transformations, similar to gauge transformations in electromagnetism.
Recall that the 4-potential A has a gauge freedom

A� ! A� C @��

defined by scalar fields �. Linearized gravity has a gauge freedom


ij ! 
ij C @ivj C @jvi

defined by vector fields v D vi@i . Show that under a gauge transformation defined by v

@j N
ij ! @j N
ij C @
2vi :

Thus, by solving

@2vi D �@
j
N
ij

for vi , we are free to set

@j N
ij D 0:

This is called Lorenz gauge.

e) Show that in the Lorenz gauge, the linearized Einstein equation

G
.1/
ij D 8�Tij

becomes

@2 N
ij D �16�Tij :

a) The cross terms cancel, �ij�jk D ıik , and we can ignore the term quadratic in 
 .
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b) We can ignore the terms with two factors of � since � is linear in 
 ; hence, � 2 is quadratic in 
 and
can be ignored. Thus, we compute
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Now, notice that the first and fourth terms cancel, which gives the result after raising the appropriate
indices with �kl .

c) Again, we compute
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We check the first formula in the hint by a straightforward calculation, noticing that �il@l@j
 D
�jl@

l@i
 D @i@j
 . Similarly, we check the second formula in the hint by noting that
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Thus, the first, third, and fourth terms of G.1/ij combine by the first formula in the hint. By the second
formula we just derived, the second and last terms combine if we add in the extra factor of @2
 just
derived. This gives the result.

d) We compute
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The last two terms are the same, and they exactly cancel the second term. This gives the result.

e) The only term in G.1/ij that isn’t of the form @j N
ij is the @2 N
ij term.

Exercise 2. The Newtonian Limit. Assume that T D �@t ˝ @t , i.e.

T�� D �.@t/�.@t/�;

where @t is the vector field in the time direction of our coordinate system. Assume this coordinate system
to be global. Further assume that time derivatives of N
�� are negligible because the sources are slowly
varying. In this problem, Greek indices go from 0; : : : ; 3 while Latin indices go from 1; : : : ; 3.

a) Show that the result of Exercise 1(e) becomes

r
2
N
ij D 0;

where now i; j 2 f1; 2; 3g and r2 is the usual laplacian on 3-space, while

r
2
N
00 D �16��:

Hint: What are the components .@t/� in a coordinate system? Argue that the form for T implies
T�� D 0 unless � D 0 and � D 0.



Worksheet 11 4

b) Argue that the unique solution of r2 N
ij D 0 is N
ij D 0.
Hints: Recall the form of the solution of Laplace’s equation in spherical coordinates, and notice that
it needs to be well-defined at both r D 0 and at r D1. If N
ij must be a constant, then we can in fact
set it to 0 by a gauge transformation.

c) Denote .@t/� D t�, and show that our solution for the perturbed metric 
�� is


�� D �.4t�t� C 2���/';

where ' D �1
4
N
00 satisfies Poisson’s equation

r
2' D 4��:

d) The geodesic equation reads

d 2x�

d�2
C � �

��

dx�

d�

dx�

d�
D 0:

Assume that the 4-velocity of our particle dx�=d� D .1; 0; 0; 0/, since our particle is moving much
slower than the speed of light in the newtonian limit. Thus, show that

d 2x�

dt2
D ��

�
00 D @�':

where we approximate � D t and ignore time derivatives of '. Note that this is exactly the classical
equation of motion for a particle in a gravitational potential ',

a D �r':

a) Since @t D .1; 0; 0; 0/ and @0
�� D 0, we have that the only nonvanishing component of T is the T00
component and we can ignore the time derivatives in the d’Alembertian, i.e. @2 D r2. This gives the
desired results.

b) Solutions to Laplace’s equation in spherical coordinates are of the form
1X
lD0

.
al

r lC1
C blr l/Pl.cos �/:

Since 1
rl blows up at the origin and r l blows up at 1, we find that the only possible solution is a

constant. But we can set the constant to 0 by using a gauge transformation.

c) We have that N
�j D 0, while N
00 is the only nonzero component. Since


�� DN
�� �
1

2
��� N


DN
�� �
1

2
��� N
00

DN
�� � 2���':

Thus, plugging this in to the form for 
�� given in the statement of the problem, we find

N
�� D �4t�t�':

Indeed, since t�tj D 0, and t0t0 D 1, we have that this satisfies the 16 relevant differential equations.
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d) The assumption on the 4-velocity implies that

d 2x�

dt2
D ��

�
00;

so we just need to compute this component of the Christoffel symbol. By definition, it is

�
�
00 D �

1

2
���@�
00;

since the other terms are all of the form @0'. We can ignore the � D 0 part since that is also a time
derivative. The � D i part is

�
1

2
��i@i
00 D ı

�i@i.2 � 1/' D ı
�i@i' D @

�';

since @0' D 0 anyway.


