Week 13 Worksheet Solutions Gravitational Radiation

Jacob Erlikhman

April 24, 2025

Exercise 1. No Dipole Radiation. In this problem, you will show that there is no dipole term in the multipole expansion for gravitational radiation; hence, the quadrupole term derived in class is the leading contribution to gravitational radiation.

a) Recall that in electromagnetism, the dipole moment of two charged particles of equal charge q separated by a distance **x** is given by

$$\mathbf{p} = q\mathbf{x}$$
.

Generalize this to i) *n* particles of charges q_i with separations \mathbf{x}_{ij} and ii) a continuous charge distribution with charge density $\rho(\mathbf{x})$. What is the electric dipole density \mathbf{P} (where $d = \int \mathbf{P} d^3 x$)?

- b) Do part (a) for gravitational masses instead of electrically charged particles.
- c) Physically, what is the first rate of change $\dot{\mathbf{p}}$ of the gravitational dipole moment?
- d) Argue that $\ddot{\mathbf{p}} = 0$; therefore, there is no mass dipole radiation.
- e) In electromagnetism, the next strongest form of radiation is due to the magnetic dipole moment: Given a current density J(x), the magnetization is

$$\mathbf{M} = \frac{1}{2}\mathbf{x} \times \mathbf{J},$$

so that the magnetic dipole moment is¹

$$\mathbf{m} = \int \mathbf{M} d^3 x.$$

Write down the specialization of this general formula to *n* charged particles of charges q_i moving with velocities \mathbf{v}_i .

f) Do part (e) for gravitational masses instead of electrically charged particles.

¹This follows from performing the multipole expansion of the vector potential **A**.

- g) For the gravitational analog of the magnetic dipole moment, show that $\dot{\mathbf{m}} = \mathbf{0}$; hence, there is no gravitational dipole radiation *at all*.
- a) Given *n* particles, we have

$$\mathbf{p} = \frac{1}{2} \sum_{i,j=1}^{n} \frac{q_i - q_j}{2} \mathbf{x}_{ij},$$

where the factor of $\frac{1}{2}$ comes from the fact that we overcount in the double summation. Given a continuous charge distribution ρ , we have

$$\mathbf{p} = \int \rho(\mathbf{x}) \mathbf{x} d^3 x,$$

so that

$$\mathbf{P} = \rho(\mathbf{x})\mathbf{x}.$$

Indeed, by expanding the potential

$$V(\mathbf{x}) = \int \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

with (obtained by using the cosine rule and expanding the square root using the binomial expansion for small x'/x)

$$|\mathbf{x} - \mathbf{x}'| \approx x - \hat{x} \cdot \mathbf{x}',$$

we find

$$V(\mathbf{x}) \approx \int \rho(\mathbf{x}') \left(\frac{1}{x} + \hat{x} \cdot \mathbf{x}'\right) d^3 x'$$
$$\approx \frac{q}{x} + \frac{\hat{x}}{x^2} \cdot \int \rho(\mathbf{x}') \mathbf{x}' d^3 x'.$$

These are the first two terms of the multipole expansion for the scalar potential: The first term is the monopole term; the second is the dipole term we are interested in.

- b) We immediately generalize all the formulas to gravitational masses by replacing $q_i \rightarrow m_i$ and charge density by mass density. We also have to invert the signs in (i): Since there are no negatively charged masses, an ideal mass dipole is made up of two equal masses, whereas in the electromagnetic case it is made up of two *oppositely charged* particles.
- c) We apply the time derivative to

$$\mathbf{p} = \int \rho \mathbf{x}' d^3 x'$$

to find

$$\dot{\mathbf{p}} = \int \rho \dot{\mathbf{x}}' d^3 x',$$

where we assume the masses are not changing with time. But note that $\rho \dot{\mathbf{x}}'$ is exactly the momentum per unit volume, so that $\dot{\mathbf{p}}$ is the total momentum of the system.

- d) $\ddot{\mathbf{p}} = \mathbf{0}$ by conservation of momentum.
- e) The current density for a charged particle q_i with velocity \mathbf{v}_i and (time-dependent) space coordinate \mathbf{x} is

$$\mathbf{J}_i(\mathbf{x}') = q_i \mathbf{v}_i \delta^3(\mathbf{x} - \mathbf{x}').$$

The total current is the sum of these over all i; hence, the magnetic dipole moment is

$$\mathbf{m} = \sum_i \mathbf{m}_i = \frac{1}{2} \sum_i q_i \mathbf{x}_i \times \mathbf{v}_i.$$

- f) Just replace $q_i \rightarrow m_i$.
- g) In the discrete case, we have

$$\dot{\mathbf{m}} = \frac{1}{2} \sum m_i \left(\mathbf{v}_i \times \mathbf{v}_i + \mathbf{x}_i \times \mathbf{a}_i \right),$$

where \mathbf{a}_i is the acceleration of particle *i* and we have again assumed that the masses are constant in time. Now, the first term is 0 automatically. The second term is also 0, because

 $m\mathbf{x} \times \mathbf{a} = \mathbf{L}$

is the angular momentum which is also conserved for the system.