Week 13 Worksheet Gravitational Radiation

Jacob Erlikhman

April 21, 2025

Exercise 1. No Dipole Radiation. In this problem, you will show that there is no dipole term in the multipole expansion for gravitational radiation; hence, the quadrupole term derived in class is the leading contribution to gravitational radiation.

a) Recall that in electromagnetism, the dipole moment of two charged particles of equal charge q separated by a distance **x** is given by

$$\mathbf{p} = q\mathbf{x}$$
.

Generalize this to i) *n* particles of charges q_i with separations \mathbf{x}_{ij} and ii) a continuous charge distribution with charge density $\rho(\mathbf{x})$. What is the electric dipole density, or polarization, **P** (where $\mathbf{p} = \int \mathbf{P} d^3 x$)?

Hint: For (ii), you need to expand the scalar potential

$$V(\mathbf{x}) = \int \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

to first order to obtain the "dipole term"

$$\frac{\mathbf{p}\cdot\hat{x}}{x^2}.$$

- b) Do part (a) for gravitational masses instead of electrically charged particles.
- c) Physically, what is the first rate of change p of the gravitational dipole moment?
 Hint: It may be easier to first solve this problem with the discrete form for p, i.e. the one with a finite number of particles.
- d) Argue that $\ddot{\mathbf{p}} = 0$; therefore, there is no mass dipole radiation.
- e) In electromagnetism, the next strongest form of radiation is due to the magnetic dipole moment: Given a current density J(x), the magnetization is

$$\mathbf{M} = \frac{1}{2}\mathbf{x} \times \mathbf{J},$$

so that the magnetic dipole moment is¹

$$\mathbf{m} = \int \mathbf{M} d^3 x.$$

Write down the specialization of this general formula to *n* charged particles of charges q_i moving with velocities \mathbf{v}_i .

- f) Do part (e) for gravitational masses instead of electrically charged particles.
- g) For the gravitational analog of the magnetic dipole moment, show that $\dot{\mathbf{m}} = \mathbf{0}$; hence, there is no gravitational dipole radiation *at all*.

¹This follows from performing the multipole expansion of the vector potential **A**.