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Exercise 1. The Faraday Tensor. Starting from the classical Lorentz force law for a particle of charge q
moving with velocity v,

dp
dt
D q .EC v � B/ ; (1)

derive a covariant Lorentz force law as follows.

a) Derive an equation for dp=d� in terms of (the components of) the four-velocity u and the fields E
and B.

b) Consider Poynting’s theorem,

d zU

dt
D �j � E � r � S;

where j is the 4-current, S D 1
4�

E � B is the Poynting vector, and zU denotes the energy density (soR
V
zUd 3r D U is the energy contained in a volume V ). Give a physical explanation for each term in

the theorem (it may help to integrate both sides).

c) Use Poynting’s theorem to show that

dp0

d�
D qE � u;

where u is the 4-velocity.
Hints: The particle’s energy density is only the first term of Poynting’s theorem. What value does the
function j.r/ take when r ¤ r0, where r0 is the location of the particle (at a given time)?

d) Combine this and the classical Lorentz force law (1) to obtain a relativistic equation of motion

dp

d�
D qF.u/;

in terms of a tensor F which acts on u.
Hints: If u is a 4-vector—hence rank 1—and p is also a 4-vector, what rank must F be? To determine
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the components of F , compare the equation of motion you obtained in terms of u; E; and B to the
tensor equation

dp�

d�
D qF ��u

�:

Use index notation; for example, the cross product can be written as .a � b/k D "ijkaibj . Note that
the “usual” form for F is .F��/, which can be obtained from your result by lowering one index.

a) Since u D v and dp=dt D 1

dp=d� ,

dp
d�
Dq.EC u � B/

Dq.u0EC u � B/:

b) If we integrate both sides over a volume V , then Poynting’s theorem says that the rate of change of
the energy in the volume V is given by �

R
j � E minusZ

V

r � Sd 3x D
Z
@V

S � da;

which is the energy flux per unit time that leaves the volume, carried away by the electromagnetic
fields. So we should interpet the second term in the theorem r � S as denoting the energy flux density
per unit time stored in the fields. The first term is the work done per unit time on the charges inside the
region by the fields. Indeed, B does no work, while qE is force on a charge, so qE � v D

R
j � E is the

work done per unit time on a particle of charge q moving with velocity v in an electric field E (note
that the time derivative of E which you might think should appear from a product rule calculation is
by Maxwell’s equations the same as the (curl of) a magnetic field and hence does no work).

c) We need to be a bit careful here, since the current is localized at the particle. When we integrate
Poynting’s theorem, we need to keep in mind that there is secretly a delta function (actually, three
delta functions) living in the current. Explicitly, j.r/ D ı3.r � r0/qv, where r0 is the location of the
particle. Since the energy carried by the particles is negative the first term

R
j � Ed 3r D qv � E, we

have

dUparticle

d�
D
dp0

d�
Dqv � E

Dqu � E:

d) So we now have an equation for dp�=d� for any � 2 f0; 1; 2; 3g. We claim that

.F ��/ D

26664
0 Ex Ey Ez
Ex 0 Bz �By
Ey �Bz 0 Bx
Ez By �Bx 0

37775 :
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To get the first row, it is easy to see that by setting the (0,0)-component 0 and the other three to the
components of E, we get qFu D qE � u. Similarly, by using the classical Lorentz force law, we see
that the first column must have its last three components as the components of E as well. To get the
other 9 components, we need the relation F 0v D v � B, where F 0 D .F ij / is the 3 � 3 submatrix of
F D .F ��/ that we’re interested in. Writing this in index notation, we have

F ijv
j
D "ijkv

jBk;

where we have cleverly used the same index j on both sides of the equation. By staring at this for a
while, you should be able to see that we can write

F ij D "ijkB
k;

this immediately shows that F is antisymmetric, so we only need to figure out three components,
F 12, F 23, and F 13, which you can do by plugging in those indices to the above equation.

Exercise 2. Charge Conservation. Starting from Maxwell’s equation

@�F
��
D 4�j�;

derive the equation of charge conservation

@�j
�
D 0;

and show that it corresponds to actual conservation of charge. Make sure to give a physical explanation of
your result!
Hint: Is @�@� a symmetric tensor? What is the contraction of an antisymmetric tensor with a symmetric
one, i.e. if A is antisymmetric, and S is symmetric, then what do you know about S��A��?

Take @� on both sides of Maxwell’s equation. Since @�@� is symmetric under � $ � and F �� is
antisymmetric, we must have

@�@�F
��
D �@�@�F

��
D 0 D @�j

�:

Writing this out in components, it says that

@tj
0
D r � j:

Since j 0 D �4��, it says (upon integration) that the current flux leaving a volume is exactly the rate of
change of the charge inside that volume, i.e.

dQ

dt
D �

Z
@V

j � da;

where @V is the boundary of the volume V and Q is the charge contained in V . But this is exactly what
charge conservation is: If the charge is changing in some region of space, then it must be going somewhere
outside that region.


