
The Cotangent Complex
Jacob Erlikhman

1 Introduction
Geometric deformation problems arise in many contexts. For example, one might be interested in a moduli
problem or a quantization problem. Given a complex symplectic manifold, deformations of a lagrangian
submanifold Y are controlled (in the differential or algebraic geometric setting) by elements in T �Y . The
key is an identification T �Y ŠNY via the symplectic form. In the more general setting of schemes, we’d
like to deform schemes themselves, or possibly morphisms of schemes. In other words, we’d like to solve
the following

Problem 0. Baby deformations. Fix a commutative diagram of schemes

X0

Y0 Y

S

f0

j ; (1)

where X0;Y0; and Y are thought of as schemes over S . We’d like to complete such a diagram to

X0 X

Y0 Y

S

f0

i

j : (2)

Here, Y is an “infinitesimal thickening” or “square-zero extension” of Y0, and we’d like to find another
“square-zero extension” of X0 in a compatible manner to Y0 � Y . In fact, we can consider the much more
general situation.

Problem 1. Scheme deformations. Suppose in (1) we instead have X0 flat over Y0 (and locally of finite
presentation; this is a technical condition), so we want to deform an entire family of schemes. I.e. we want
to find X flat over Y making the diagram commute.

Finally, rather than deforming schemes we may want to deform scheme morphisms. Namely, we want
to consider
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Problem 2. Morphism deformations. Suppose we have the following commutative diagram of schemes,

X0 X

Y0 Y

Z0 Z

S

f0

i

h0

j

k

; (3)

where X;Y;Z are “square-zero extensions” of X0;Y0;Z0, respectively. We want to fill it in with a Z-
scheme morphism X! Y . More generally, suppose X0, and Y0 are flat (of locally finite presentation) over
Z0, then when can we find a flat (of locally finite presentation) morphism X ! Y ?

These problems are solved in great generality by Illusie’s cotangent complex, which formally is just the
left derived functor (in a suitable derived category) of the Kähler differentials�X=Y , thought of as functorial
in X .1 We will find that obstructions to deformations are given by a class in Ext2OX0

.LX0=Y0
;J /, and the set

of allowed deformations forms a torsor under Ext1OX0
.LX0=Y0

;J /, where J is the square-zero ideal of the
extension j W Y0 ,! Y (see §5) and LX0=Y0

is the relative cotangent complex of X0 over Y0. Here, Ext is
defined in the Appendix; it agrees with the usual Ext if the simplicial modules in question are trivial.

Remark. Though we have so far considered deformations of schemes, the theory we will develop will be
far more general, instead working with topoi. Although we won’t cover this example in this paper, suppose
you wanted to deform f W X ! Y , where all three, X , Y , and f can vary. In this case you must work in
the topos-theoretic setting: There is a certain ringed topos that encodes these data.

Unfortunately, there is not enough space here to cover even the most essential topos theoretic and
simplicial algebraic preliminaries. Instead, these most essential pieces have been relegated to an Appendix
at the end of the paper. If one does not know a definition or result that is referenced in the body of the
paper, then it should (almost always) be found there. After giving the basic notation and definitions to
be used in the paper (others will be found in the Appendix), we will define the cotangent complex and
give some indication as to why it is the “right” definition.2 Afterwards, we will indicate the main theorem
of deformation theory via the cotangent complex, that ExalA.B;M/Š Ext1.LB=A;M/, where the first is
the group of A-algebra extensions of B by M . At this point, we can now tackle deformation-theoretic
problems. We will fully characterize obstructions to deformations, isomorphism classes of deformations,
and the automorphism group of a given deformation, all of which will be given by various constructions
related to the cotangent complex, utilizing in a critical way the preliminary material.

Remark. You will notice that the bulk of the paper is discussing algebraic and category-theoretic prelimi-
naries. This is because once these are well-established and sorted, most of the work is done. We need only
use the results and definitions discussed previously to tackle deformation theory, and we will find that the
proofs are not difficult—most of the work has been relegated to the definitions. This tells us that the theory
we are studying is well-developed.

1I unfortunately don’t have space to include this result.
2Whenever a mathematical object is mentioned whose definition is not given in this paper, a definition can be found in [1]

and/or in [4].
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2 Notation and Basic Definitions
Let � denote the simplex category as usual, allowing us to define simplicial and cosimplicial objects in
any other category. Denote by N� the category of finite totally ordered sets. Given I 2 N� and a family of
functors .Si/i2I of a category A into itself, we can define the composition Bi2ISi . We will only need the
form of this composition for I D Œ0;n�, in which case Bi2ISi D S0 � � �Sn, and if I D ;, then Bi2ISi D idA.

Given a p-simplicial or p-cosimplicial objectX of a category A, let�X be the diagonal (co)simplicial
subobject of X , given by E 7! X.E; : : : ;E/. Given an additive category A, let C.A/ be the category of
complexes. Define n-C.A/ to be the category of complexes of n-uples of A. Let Simpl.A/ be the category
of simplicial objects of A. Similarly, let hSimpl.A/ denote the category of simplicial objects of A up to
homotopy. For an n-simplicial object X of A, the complex of chains of X is denoted zX and given by
zXp1;:::;pn

DXp1;:::;pn
for pi � 0, where the differential di D

P
j .�1/

jX.id; : : : ;d �J; : : : ; id/ (dj in the i ’th
place). We have a functor of associated simple complexZ

W n-C.A/! C.A/;

defined as
R
Lp D

LP
piDpL

p1;:::;pn , with differential given by
P

j .�1/
P

i<j pidj .
Define the normal complex NX of X in the usual way,

NXn D\i2Nker.di WXn!Xn�1/:

Define the Dold-Puppe transform KY of Y 2 C�.A/, where C� (resp. C �) denotes the full subcategory of
C of chains (resp. cochains). Explicitly, we have

KYn D

M
p2f0;:::;ng

M
f WŒ0;n�!Œ0;p�

Yp;f ;

where f ranges over all surjective arrows Œ0;n�! Œ0;p� of� and Yp;f D Yp. LetDSimpl.A/ (resp. D�.A/)
denote Simpl.A/ (resp. C�.A/) localized with respect to quasi-isomorphisms.

Let T be a topos and A a ring of T (the prototype is AD O for O a structure sheaf of a scheme).3 Denote
by AX the free A-module generated by X , i.e. the sheaf associated to the presheaf U 7! A.U /X.U /. For
M 2 A-mod, denote by SA.M/, or simply S.M/, when A is clear from the context, the symmetric algebra
of M . For X 2 T , denote

AŒX�D SA.AX/;

the free A-algebra generated by X . A simplicial sheaf is just a simplicial object of T , and it follows by
a theorem of Giraud (SGA 4 IV 1.2) that the category Simpl.T / is a topos. We can then go on to discuss
inner homs in this category vs. T , but we will not do so (see §2.3.1 of [1]). A simplicial ring of T is just
a ring of Simpl.T /. Given a simplicial ring ƒ, a simplicial ƒ-module (resp. a simplicial ƒ-algebra) is
a module (resp. an algebra) over ƒ viewed as a trivial simplicial object, i.e. one defined by a constant
functor �op! C, where C is the category of interest. As mentioned in §1, we denote by Ext the usual Ext
in the category of simplicial modules.

3I’m going to assume almost everything from topos theory as prior knowledge; however, we don’t need this generality
to understand the bulk of the paper. Namely, you can think of a topos as just the category of sheaves on a site. If this is
uncomfortable, just think of the category of sheaves on a topological space.
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Given a simplicial ring A, denote by A -mod the category of A-modules and by A -alg that of simplicial
A-algebras. Finally, given a fixed A-algebra B , we write A -alg=B for the category of A-algebras “above”
B , i.e. equipped with a morphism to B that fits in a suitable commutative triangle. We say a morphism of
A -mod (resp. A -alg, resp. A -alg=B) is a quasi-isomorphism if the morphism of the underlying simplicial
sheaves of sets is one. We denote by D�.A/ (resp. D.A -alg/, resp. D.A -alg=B/) the corresponding
localized categories with respect to quasi-isomorphisms.

3 The Cotangent Complex
First, we recall/make some definitions. Here, T is a topos, A a ring of T , B an A-algebra, and M a
B-module. Denote by

B˚M D SB.M/=˚i�2 S
i
B.M/

the B-algebra of dual numbers on M . There is then a canonical functorial isomorphism

DerA.B;M/
Š
�! HomA -alg=B.B;B˚M/

d 7! .x 7! xCdx/:

There is an exact sequence

0! I ! B˝AB! B! 0

x˝y 7! xy

split by the two ring morphisms

j1;j2 W B! B˝AB

j1.x/D x˝1

j2.x/D 1˝x:

Define, for n 2 N,

P n
B=A D B˝AB=I

nC1;

the ring of principal parts of order n of B over A. The structure of B-algebra on P n
B=A

defined by j1

(resp. by j2) will be called the left (resp. right) structure, and when we regard P n
B=A

as a B-algebra
without specification, we mean the left structure. Using P 1

B=A
we define the module of Kähler differentials

of B over A as usual, which is just �1
B=A
D I=I 2. Recall that the exterior differential dB=A gives us a

functorial isomorphism

HomB.�
1
B=A;M/

Š
�!DerA.B;M/

u 7! udB=A:

Remark. In the sequel we will begin to speak of morphisms of ringed topoi. Although formally we really
do mean this, you can just think of these as morphisms induced by scheme morphisms.
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Let f WX ! Y be a morphism of ringed topoi. Define

P n
X=Y ´P

n
OX =f �1OY

�1
X=Y ´�

1
OX =f �1OY

:

As before, we say that P n
X=Y

is the ring of principal parts of order n of X over Y , the topos X ringed by
P n

X=Y
is called the n’th infinitesimal Y -neighborhood ofX in the diagonal. We say that�1

X=Y
is the module

of Kähler differentials of X over Y . To a commutative diagram of ringed topoi

X X 0

Y Y 0

f

u

f 0

v

; (4)

corresponds a morphism �1
X=Y
!�1

X 0=Y 0
of modules above u, i.e. a morphism

u��1
X=Y !�1

X 0=Y 0 (5)

defined as follows. Let AD u�1f �1OY Š f
0�1v�1OY , B D u�1OX , A0 D f 0�1OX 0 , B 0 D OX 0 , from which

we obtain a commutative square of rings of X 0

B B 0

A A0

: (6)

The morphism (5) is thus the map

�1
B=A˝B B

0
!�1

B 0=A0

defined by this square and the identification of �1
B=A

and u�1�1
X=Y

by the definition of �1
X=Y

. If the
square is cocartesian, (5) is thus an isomorphism by definition. If we have a morphisms of rings of T ,
A! B ! C , these give the usual exact sequence of C -modules for �1. Similarly, if we instead have

functorial morphisms defined by morphisms of ringed topoi, X
f
�! Y

g
�!Z, we have the exact sequence

f ��1
Y=Z!�1

X=Z!�1
X=Y ! 0:

Let A! B be a morphism of rings of T . We define the cotangent complex of B over A, denoted
LB=A, the simplicial B-module

LB=A´�1
P=A˝P B;

where P ´ PA.B/ is the standard simplicial resolution of B . By functoriality of the standard resolu-
tion and the module of Kähler differentials, the cotangent complex is also functorial in many ways. For
example, it depends functorially on the morphism A! B: To a commutative square (6) is associated a
simplicial B-module morphism LB=A! LB 0=A0 . It also commutes with filtered colimits. It commutes with
pullback f �1LB=A Š Lf �1B=f �1A and the sheafification functor. See §II1.2.3 of [1] for details on these.
The augmentation PA.B/! B defines an augmentation

LB=A!�1
B=A: (7)
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Proposition 1. The morphism

H0.LB=A/!�1
B=A

defined by the augmentation (7) is an isomorphism.

Proof. Denote PA.B/D P again. The fact that P ! B is a quasi-isomorphism implies in particular that
the A-algebra B is the cokernel of the double arrow P1 ⇒ P0. The claim hence follows from the fact that
�1 commutes with colimits.

Corollary 2. Let M be a B-module. There exists a canonical functorial isomorphism

Ext0B.LB=A;M/
Š
�!DerA.B;M/:

Let now A! B be a morphism of simplicial rings of T . Then LB=A is a bisimplicial B-module, where
we regard B as a bisimplicial ring that is trivial in the vertical direction. We set

L�
B=A´�LB=A D�

1
P=A˝P B:

This is a flat B-module, which, when A! B is defined by a morphism of rings A0! B0 of T , coincides
with the cotangent complex LB0=A0

introduced earlier. The augmentation (7) regarded as a morphism of
bisimplicial B-modules induces, by restriction to the diagonal, a morphism of B-modules

L�
B=A!�1

B=A: (8)

We have

Proposition 3. Suppose that for each n 2 N, there exists a flat An-module En such that Bn Š SAn
.En/

(which is the case for example if B is free over A term-by-term). Then, the augmentation (8) is a quasi-
isomorphism.

Proof. Omitted; see II.1.2.5.3 and II.1.2.4.4 of [1].

Let f W X ! Y be a morphism of ringed topoi. We call the cotangent complex of X over Y the
simplicial OX -module LX=Y defined by

LX=Y ´ LOX =f �1OY
:

It satisfies a similar functoriality condition on f as we have already seen, giving rise to a morphism u�

LX=Y ! LX 0=Y 0 associated to a commutative diagram (4).
Let T be a topos, A! B ! C morphisms of simplicial rings of T . We thus have a commutative

diagram
A P Q

A B C

id ;

where P D P�
A .B/´ �PA.B/ and Q D P�

P .C /. Since Q is free term-by-term over P , the canonical
sequence

0!�1
P=A˝P Q!�1

Q=A!�1
Q=P ! 0 (9)
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is exact. Since �1
Q=P

is flat over Q, extension by scalars in C of the sequence above is likewise exact.
Define

L�
C=B=A D .9/˝QC I

this sequence is exact. It is called the exact sequence (or true triangle) of transitivity relative to A!
B! C , and it depends functorially on A! B! C .

Proposition (Distinguished or Fundamental Triangle of the Cotangent Complex). The distinguished
triangle of D�.C / associated to L�

C=B=A
by the functor ��� is, up to a canonical isomorphism,

L�
C=B

L�
B=A
˝B C L�

C=A

; (10)

where the left arrow is a map of degree 1 and the degree 0 arrows are the images in D�.C / of the canonical
ones.

We omit the proof for brevity, see II.2.1.2 of [1].

4 The Fundamental Theorem
Let T be a topos. By extension of algebras of T we mean a commutative diagram of rings of T

X D

E B

A

p

;

where p is surjective and the kernel of p is a square-zero ideal I . We say that X is an A-extension of
B by the B-module I . The algebra extensions of T form a category, denoted Exal, where morphisms of
algebra extensions are given by commutative diagrams in the obvious way (start with a map A0! A . . . ).
By associating to each extension X the pair formed by an underlying morphism A! B and the B-module
I D p�1.0/, we can define a functor

� W Exal! Algmod;

where Algmod is the category of pairs .A! B;I / where A! B is a morphism of rings and I is a B-
module. A morphism between such pairs is defined by a commutative square in the natural way. Fixing a
ring A, we denote by ExalA the subcategory of Exal formed by A-extensions. We denote by ExalA.B;�/
the subcategory of A-extensions of B by a variable B-module, and finally we denote by ExalA.B;I / the
subcategory of A-extensions of B by I .

Think of X as a short exact sequence I !E! B . Given a map f WE!E 0 (resp. g WG 0!G) of A-

modules, denote by f �X the pushout (resp. byX �g the pullback) extension: 0!E 0!E 0
E
˚F !G! 0
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(resp. 0!E! F �GG
0!G 0! 0), where E 0

E
˚F denotes the obvious pushout. Now, given a morphism

of A-algebras u WC !B , we haveX �u. There is a canonical morphismX �u!X in ExalA whose image
under � is .u; idI /. Moreover, given u0 W C 0! C another morphism of A-algebras, we have a canonical
isomorphism

X � .uu0/
Š
�! .X �u/�u0

in ExalA.C
0;I /, satisfying the usual cocycle condition. Similarly, given v W I ! J a morphism of B-

modules, we can define v �X as before, we have a canonical morphism X ! v �X whose image under �
is .idB ;V /, and we have a canonical isomorphism

.v0v/�X
Š
�! v0 � .v �X/

satisfying the usual cocycle condition.
Let C be an A-algebra. We say that C satisfies condition (L) if for any A-extension X

0! I ! B! C ! 0;

the sequence

0! I !�1
B=A˝B C !�1

C=A! 0

is exact on the left; denote this sequence by diff.X/. We have thus obtained a functor X 7! diff.X/ of
ExalA.C;�/ compatible with the natural projections onto C -mod and giving rise to a group homomomor-
phism

diff W ExalA.C;I /! Ext1
C .�

1
C=A;I /;

where we denote by Exal the Picard group underlying Exal.
Now, let

Y D .0! I
i
�! J

f
�!�1

C=A! 0/

be an exact sequence of C -modules. From it, we can obtain an A-extension of P 1
C=A
Š C ˚�1

C=A
by I

Y 0 D .0! I

2640
i

375
��! C ˚J

id˚f
���! C ˚�1

C=A! 0/:

Next, define

alg.Y /´ Y 0 �j2;

where j2 WC!P 1
C=A

is the homomomorphism defining the right structure onP 1
C=A

, i.e. j2.x/D xCdC=Ax.
We then have the following, which we state without proof (see II.1.1.9 of [1]).

Proposition 4. If C is an A-algebra verifying condition (L), then diff and alg are inverses to one another.
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Let f WX ! Y be a morphism of ringed topoi. An infinitesimal Y -neighborhood of X of order 1 (or
Y -extension) of X will mean a commutative diagram of ringed topoi

X X 0

Y

i

f ;

where i is an equivalence of the underlying topoi and i�1OX 0! OX is surjective with a square-zero kernel.
We are now ready to state

Theorem 5. Let T be a topos, A! B a morphism of rings of T , and M a B-module. There is a functorial
isomorphism

ExalA.B;M/
Š
�! Ext1B.LB=A;M/:

The proof will be given after some preliminaries. Denote by P D PA.B/ as usual. It satisfies condition
(L) since it is an A-algebra of the simplicial topos Simpl.T / and it is free term-by-term. Let X be an
A-extension of B by M . We thus obtain an A-extension X �p of P by M (here p is the augmentation
P ! B), hence also an extension of P -modules diff.X �p/ of �1

P=A
by M . Finally, we have an element

˛.X/D �diff.X �p/ 2 Ext1P .�
1
P=A;M/:

Clearly X 7! ˛.X/ is a group homomorphism which is functorial in M . It is also functorial in the map
A! B , see §II.1.2.2 [1]. Moreover, using the isomorphism (13), we have

Ext1P .�
1
P=A;M/

Š
�! Ext1B.LB=A;M/:

Proof Sketch of Theorem. We claim that ˛ composed with the above isomorphism gives us the desired one.
We will proceed by constructing an inverse to ˛. Let y 2Ext1P .�1

P=A
;M/. Using I.3.2.3.8 [1], there exists a

quasi-isomorphism of P -modules s WM !N and an extension Y of �1
P=A

by N such that y D �s�1�.Y /,
giving us an A-extension

alg.Y /D .0!N !E! P ! 0/:

Since P is acyclic in positive degrees, we can apply H0 to deduce an A-extension of H0.P / by H0.N /,
finally obtaining an A-extension of B by M :

.H0s/
�1
�H0 alg.Y /� .H0p/

�1
D .0!M ! F Š H0E! B! 0/:

It then takes some work to prove that this is independent of choice of .s;Y /, which will then allow us to
define ˇ.y/D .H0s/

�1 �H0 alg.Y /� .H0p/
�1. Skipping this work, we have indeed,

ˇ˛.X/Dˇ.�diff.X �p//

DH0.algdiff.X �p//�H0p
�1

DH0.X �p/�H0p
�1

DX;
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so ˇ˛ D id. Conversely, suppose y 2 Ext1P .�1
P=A

;M/. Then, by definition

˛ˇ.y/D�diff.H0s
�1
�H0 alg.Y /�H0p

�1
�p/

D�H0s
�1�diff.H0 alg.Y /�H0p

�1
�p/ .∵ �.f �X/D .�f /�.X//:

The morphism of A-extensions

alg.Y / 0 N E P 0

H0 alg.Y / 0 H0N H0E H0P 0

v .H0p/�1p

defined by projection onto H0 gives the relation

H0 alg.Y /�H0p
�1
�p D v �alg.Y /:

Thus,

˛ˇ.y/D�..H0s
�1/v/�diff alg.Y /

D�..H0s
�1/v/�.Y /:

However, we have vs D H0s, so .H0s
�1/v D s�1 in D�.P /. Hence,

˛ˇ.y/D �s�1�.Y /D y:

This theorem implies that A-algebra extensions of B by M are completely controlled by LB=A.
Finally, we have

Lemma (EGA 0IV 18.3.8). Let A! B be a surjective morphism of rings with kernel I . Denote by U the
A-extension I=I 2! A=I 2! b. Then f 7! f �U defines a functorial isomorphism

HomB.I=I
2;M/

Š
�! ExalA.B;M/

for M 2 B -mod.

Corollary 6. Under the hypotheses of the lemma above, we have H0.LB=A/D 0 and a functorial canonical
isomorphism H1.LB=A/Š I=I

2.

Proof. Since the product B˝AB ! B is an isomorphism, we have �1
B=A
D 0, so H0.LB=A/D 0. Hence,

the canonical projection LB=A! H1.LB=A/Œ1� defines a functorial isomorphism

HomB.H1.LB=A/;M/
Š
�! Ext1B.LB=A;M/

for M 2 B -mod. Using Theorem 5 and the lemma above, we have the isomorphism

HomB.I=I
2;M/

Š
�! HomB.H1.LB=A;M/:
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5 Deformation Theory
Fix a topos T and a ring A of T . Recall that we have a functor

� W ExalA! A-algmod;

where A-algmod is the subcategory of Algmod consisting of pairs .B;M/ where B is an A-algebra and
M a B-module (a morphism is then pair consisting of a morphism of A-algebras and a morphism of B-
modules). � associates to each A-extension 0! I ! B ! B0 the pair .B0;I / and to each morphism of

A-extensions NB
Nf
�! NC the pair �. Nf /D .f0;u/, where u W I ! J , f W B ! C , f0 W B0! C0. Now, fix an

A-extension NB and a morphism of A-algmod .f0 W B0! C0;u W I ! J /. Consider the following

Problem. Find a morphism of A-extensions Nf W NB! NC such that �. Nf /D .f0;u/.

We can reformulate this problem as follows. Find a B-extension NC of C0 by J such that the image of
the compositie map

ExalB.C0;J /! ExalB.B0;J /
Š
�! HomB0

.I;J /

is the given morphism u, the first arrow is the canonical arrow defined by f0, and the second the canonical
isomorphism of (EGA 0IV 18.3.8). We have a commutative square

ExalB.C0;J / HomB0
.I;J /

Ext1C0
.LC0=B ;J / Ext1C0

.LB0=B˝B0
C0;J /

Š Theorem 5 ŠCor. 8 ;

where the lower horizontal arrow is defined by the canonical morphism LB0=B˝B0
C0! LC0=B . It follows

that the problem is solved by the long exact sequence of Ext iC0
.�;J / defined by the fundamental transitivity

triangle of LC0=B0=B :

0!DerB0
.C0;J /!DerB.C0;J /! 0! ExalB0

.C0;J /!

!ExalB.C0;J /! HomB0
.I;J /

@
�! Ext2C0

.LC0=B0
;J /! �� � :

We thus have

Theorem 7. There exists an obstruction !. NB;f0;u/ D @u 2 Ext2C0
.LC0=B0

;J / whose vanishing is neces-
sary and sufficient for the problem above admitting a solution. Moreover, when it does vanish, the set of
isomorphism classes of solutions to the problem is a torsor under the group ExalB0

.C0;J /. The group of
automorphisms of a solution is canonically identified with DerB0

.C0;J /.

Remark. This is the simplest situation; there are various improvements we could make to this theorem. For
example, suppose we instead want a flat deformation of C0 over B , i.e. a B-extension NC such that C is flat
over B and C ˝B B0! C0 is an isomorphism. Notice that the class !. NB;f0;u/ depends functorially on u.
More precisely, if we denote by !. NB;f0/ 2 Ext2C0

.LC0=B0
;I ˝B0

C0/ the obstruction class corresponding
to the adjunction morphism I ! I ˝B0

C0, so that for a morphism u W I ! J corresponding by adjunction
to v W I ˝B0

C0! J , we have

!. NB;f0;u/D v!. NB;f0/:
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We then immediately obtain

Corollary 8. The class !. NB;f0/ is the obstruction fo a flat deformation of C0 over B . When it vanishes,
the set of isomorphism classes of flat deformations is a torsor under ExalB0

.C0;I ˝B0
C0/, and the group

of automorphisms of a flat deformation is canonically identified with DerB0
.C0;I ˝B0

C0/.

We can now state the solution to Problems 0 and 1 from the introduction. Note that in addition to the
statements there, we also have on the topos jX0j, which denotes the underlying topos of the ringed topos
X0, a morphism of p�1

0 .OS/-extensions:

0 I OX OX0
0

0 f �1
0 J f �1

0 OY f �1
0 OY0

0

;

where we identify jX j with jX0j and jY j with jY0j via ji j and jj j. In particular, we have a morphism of
OX0

-modules, v W f �0 J ! I . And, if f0 is flat, f is flat if and only if v is an isomorphism (see Lemma
III.2.1.1.1 of [1]; this is just commutative algebra).

Theorem 9. There exists an obstruction !.f0;j;v/ 2 Ext2OX0
.LX0=Y0

;I / whose vanishing is necessary
and sufficient for the existence of a diagram (1) inducing the diagram (2) and the morphism v given
above. When this class does vanish, the set of isomorphism classes of solutions (2) is a torsor under
the group Ext1OX0

.LX0=Y0
;I /, and the automorphism group of a solution is canonically identified with

Ext0OX0
.LX0=Y0

;I /: Moreover, we have !.f0;j;v/D v!.f0;j / where we set

!.f0;j /D !.f0;j; id.f
�

0 J // 2 Ext
2
OX0
.LX0=Y0

;f �0 J /:

When f0 is flat, !.f0;j / is an obstruction to the existence of a flat deformation ofX0 over Y . If it vanishes,
the set of isomorphism classes is a torsor under Ext1OX0

.LX0=Y0
;f �0 J / and the group of automorphisms of a

given flat deformation is canonically identified with Ext0OX0
.LX0=Y0

;f �0 J /.

Remark 1. This theorem accounts for the entire theory of scheme deformations. Indeed, suppose that the
topoi X0;Y0;S are locally ringed and the morphisms f0;q0 are admissible in the sense of M. Hakim’s
thesis (this is the case if for example the topoi are those associated to schemes). It follows immediately
by definition that X ! Y ! S are locally ringed and i;j are admissible, so our problem is still solved by
Theorem 9.

Remark 2. Suppose that X0! Y0! S really are scheme morphisms (i.e. morphisms of ringed Zariski
topoi defined by scheme morphisms) and that I (resp. J ) is a quasi-coherent OX0

-(resp. OY0
-)module. Then

it follows from (EGA I 2e édition 5.1.9) that X and Y are schemes and the morphisms X ! Y ! S , i;j
are scheme morphisms. Hence, our problem is again solved by Theorem 9.

Remark 3. Finally, suppose that X0 is a flat relative scheme locally of finite presentation over Y0 and that v
is an isomorphism. The definition is a bit technical, but such a relative scheme is defined by the following.

i) a family fUigi2I of objects of S which cover the final object of S

12



ii) for all i 2 I , a �.Ui ;OS/-scheme Xi

iii) for each pair .i;j / 2 I � I , restriction isomorphisms of Xi and Xj on a sufficiently fine refinement
of Ui �Uj that verify a condition of transitivity over a sufficiently fine refinement of Ui �Uj �Uk .

In effect, a flat relative scheme is just a family of schemes. We need the locally of finite presentation
condition to ensure that the definitions of flatness for such general objects agree (there are different ones,
but they coincide if we include this condition, see [3] for details). It then follows immediately that X is a
flat relative scheme locally of finite presentation over Y , so this problem is again solved by Theorem 9.

We now want to consider morphisms of schemes (or more generally ringed topoi), i.e. Problem 2 from
the introduction, but unfortunately there is not enough space at this point. If the reader has been following
along, it should now be straightforward for him or her to read §III.2.2 of [1], where one can find a theorem
characterizing deformations of morphisms in an analogous manner to Theorem 9.

We’re now ready for a an example.

Example Deformations of Curves. Let Y be a locally noetherian scheme. We define a curve over Y to be
a morphism f WX ! Y which is flat, separated, of finite type, and with relative dimension 1. We take f to
be proper. Let A be a complete local noetherian ring, with residue field k. Let S D SpecA, s D Speck, and
let X0 be a projective and smooth scheme over s satisfying H 2.X0;TX0=s/D 0. We then claim that there
exists a proper and smooth formal scheme X over OS lifting X0.

Proof. Let OS D colimSn, where Sn D SpecA=𝔪nC1, 𝔪 denoting the maximal ideal of A. We claim
that X D colimXn exists. Assume Xm smooth over Sm has been constructed for m � n such that Xm D

Sm�Sn
Xn, and let in W Sn! SnC1 be the inclusion. By Proposition III.3.1.2 in [1], f W X ! Y smooth

implies that the cotangent complex has perfect amplitude contained in Œ0;0�, �1
X=Y

is locally free of finite
type, and the natural augmentation LX=Y !�1

X=Y
is a quasi-isomorphism. In particular, this implies that

when we pass to the derived category it is an isomorphism. Then, by Theorem 9, the obstruction to the
existence of a smooth lifting XnC1 of Xn over SnC1 is in fact contained in H2.X0;TX0=s˝𝔪nC1=𝔪nC2/D

H2.X0;TX0=s/˝𝔪nC1=𝔪nC2 D 0 by the assumption; indeed, this follows since Ext is taken as a colimit
in the derived category; hence, we are literally taking H2. The square zero ideal in question is indeed
𝔪nC1=𝔪nC2 since it is the kernel of the map A=𝔪nC2! A=𝔪nC1.
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6 Appendix
This material covers the bare minimum of that in Chapters I and II of [1] that we will need. Necessarily,
much material will be omitted; you can find further details in [1] or [Stacks]. We begin with

Theorem (Eilenberg-Zilber). There are functorial homomorphismsZ
zX !e�X

e�X !
Z
zX;

inducing the identity in degree 0, and inverse to each other up to a functorial homotopy.

Moreover, these are explicitly given by the “shuffle-map” and the “Alexander-Whitney morphism,”
though we won’t need these explicit descriptions. We also have

Theorem (Dold-Puppe). The functorsN W Simpl.A/!C�.A/ andK WC�.A/! Simpl.A/ are quasi-inverse.

This theorem has the following corrolaries.

i) N and K are exact.

ii) There is a functorial canonical isomorphism zX ŠNX˚DX , whereDX is the degenerate subcom-
plex of X , given by

DXn D

X
im.si WXn�1!Xn/:

We now need one more construction, known as the “standard simplicial resolution.” This will allow
us to obtain free or flat resolutions of various objects and will be a key component in the definition of the
cotangent complex. Let T W A! B, U W B! A be a pair of adjoint functors, with adjunction morphisms a
and b, respectively. We can define an augmented simplicial object .T;U /� in End.B/ called the standard
simplicial resolution defined by .T;U / as follows.

.T;U /n D .T U /
Œ0;n�

.T;U /�1 D .T;U /.;/D idB

dn
i D .T U /

Œ0;i�1�b.T U /ŒiC1;n�

sn
i D .T U /

Œ0;i�1�TaU.T U /ŒiC1;n�;

where the augmentation is given by b W T U ! idB . Dually, we can define an object .U;T /� in End.A/,
called the standard cosimplicial resolution defined by .T;U /:

.U;T /n D.UT /Œ0;n�

.U;T /�1
D.U;T /.;/D idA

d i
n D.UT /

Œ0;i�1�a.UT /Œi;n�

si
n D.UT /

Œ0;i�1�UbT .UT /iC2;n�;
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with augmentation given by a W idA! UT .
Armed with this construction, let now T be a topos and A a ring of T . Note that the free A-module

functor A� is the left adjoint of the forgetful functor A -mod! T . Using this pair of adjoint functors
T D A�, U D forget, denote FA.M/!M (or F.M/ if A is clear from the context) the free standard
resoution of M , defined by the standard simplicial resolution associated to .T;U /. Similarly, AŒ�� is left
adjoint to the forgetful functor A -alg! A -mod. For B 2 A -alg, we define the standard free resolution
of B , PA.B/! B (or P.B/ if A is clear from the context), by the standard simplicial resolution defined
by .AŒ��; forget/. We remark that this resolution is functorial in the nicest possible ways, and we will use
many of these properties without restating them or proving them, instead saying “by functoriality of the
standard resolution . . . ,” see §II.1.2 of [1].

Remark. This resolution is explicitly given by PA.B/
1 D AŒB�, PA.B/

2 D AŒAŒB��, . . . .

Now, we need to discuss technicalities of the derived category D�.A/. Unfortunately, there isn’t a way
to prove the fundamental theorems of deformation theory without addressing these. Let �.n/ denote the
simplicial set represented by Œn� 2�. Define

 DZ�.1/= imZd0

� DZ�.1/= imZd0C imZd1;

where d 0 and d 1 are the two injections Œ0�! Œ0;1�. Note that the notation is as before: Z�.1/ is the free
Z-module generated by �.1/. We have an exact sequence

0! Z
Z

d1

��!  ! � ! 0; (11)

split in each degree.
Let now A be a simplicial ring. For E 2 A -mod, set E D ˝ZE and �E D �˝ZE, where  and �

are regarded as constant simplicial Z-modules. Tensoring Equation 11 with E gives an exact sequence

0!E
iE

�! E! �E! 0:

These functors are generalizations of the functors of “cone” and “suspension,” respectively, to the derived
category, and we will call them by these names.  and � admit right adjoints which we denote by '
and !, respectively. It is a fact that � and ! preserve homotopies and quasi-isomorphisms (the statement
for � follows from the SES above). It follows that they extend to functors also denoted by �;! from
D�.A/!D�.A/, and it is a fact that � WD�.A/!D�.A/ is fully faithful [Corollary I.3.2.1.10 Illusie]. We
then define

ExtpA .E;F /D colim
n��p

HomD�.A/.�
nE;�nCpF /;

where E;F 2D�.A/. Note that it follows immediately from the definition that

Extp.� iE;F /ŠExtp�i.E;F /

Extp.E;� iF /ŠExtpCi.E;F /:

Example. SupposeA is a trivial simplicial ring with essentially constant valueƒ and that we identifyD�.A/
with D.ƒ/. In this case, � just becomes the shift functor, X 7!XŒ1�, and the above Ext identifies with the
usual hyperext.
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For v a morphism in C.A -mod/, denote by C.v/ the usual cone over v. Let X D .0! E
u
�! F

v
�!

G! 0/ be an exact sequence of A-modules. Associate to X an exact triangle ���.X/ of D�.A/ as follows.
Consider the following commutative diagram

0 E E �E 0

0 E E˚F C.u/ 0

0 E F G 0

�iE

id

id

264�iE

u

375
pr2

pr1

s

p

;

where the map s is a quasi-isomorphism. Set

���.X/D .E
u
�! F

v
�!G

ps�1

���! �E/:

This is clearly a distinguished triangle depending functorially on X , and, moreover, any distinguished
triangle in D�.A/ is isomorphic to one of the form ���.X/. Denote by �.X/ the morphism G! �E. Given
a map f W E ! E 0 (resp. g W G 0! G) of A-modules, denote by f �X the pushout (resp. by X �g the

pullback) extension: 0! E 0! E 0
E
˚F ! G! 0 (resp. 0! E ! F �G G

0! G 0! 0), where E 0
E
˚F

denotes the obvious pushout. By definition, we have

�.f �X/D.�f /�.X/

�.X �g/D�.X/g:

Moreover, � induces a functorial homomorphism

� W Ext1.G;E/! Ext1.G;E/;

where the Ext is calculated in the abelian category A -mod. We can thus use � to obtain a description of
elements of the RHS in terms of extensions of A-modules.

The final piece of technology is derived tensor products. We want to be able to write down a func-

tor �
`
˝� WD�.A/�D�.A/!D�.A/, which when restricted to Hot�.A/ (the category of A-modules up to

homotopy), is the left derived functor of the tensor product in Hot�.A/. For the details regarding homo-
topies in (simplicial) categories, please see §§1.1.5-6 of [1] (or elsewhere). We will approach this prob-
lem by defining it as the composition of two functors, and then proving that the functor we have derived

is the left derived functor. To begin, note that we have functors A -mod! A -mods
�
�! A -mod, where

A -mods´ Simpl.A -mod/. Moreover, their composition is the identity. Indeed, the first functor associates
to an A-module L the vertically trivial simplicial A-module with value L, while the second associates to
a simplicial A-module M the diagonal subobject �M . Denote by D�v.A/ (resp. D�hv

.A/) the category
A -mods localized with respect to morphisms which induce isomorphisms (resp. quasi-isomorphisms) on
the homologyA-modules. The spectral sequence of bicomplexesH h

pH
v
q )H� along with Eilenberg-Zilber

gives that � factorizes: We have the commutative diagram

A -mods D�v.A/ D�hv
.A/

A -mod D�.A/

� � ;
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where the horizontal arrows are localization functors. In particular, � induces for E;F 2 A -mod a functo-
rial homomorphism

� W Extn.E;F /! Extn.E;F /

for any n 2 Z. For nD 1, we recover the homomorphism for � given above.
Define Dv.A/ (resp. Dhv.A/) as the localization of C.A -mod/ by arrows which induce isomorphisms

(resp. quasi-isomorphisms). By Dold-Puppe, D�v.A/ identifies with the full subcategory of Dv.A/ formed
by complexes that are acyclic in positive degrees (hence justifying the notation). Similarly, D�hv

.A/ identi-
fies with the full subcategory of Dhv.A/ formed by complexes that are acyclic in posititve degrees. In the
category D�v .A/ (i.e. complexes have bounded cohomology in the positive direction), the tensor product
admits a left derived functor. We then have

Lemma A1. Let L be an A-module, f W E ! F a quasi-isomorphism of A-modules. If L is flat, or if E
and F are flat, then L˝f W L˝E! L˝F is a quasi-isomorphism.

Proof. If A is trivial, the assertion results from Eilenberg-Zilber and Künneth. In the general case, tensor
f with the standard free resolution FA.L/! L to obtain a commutative square of simplicial modules

FA.L/˝E FA.L/˝F

L˝E L˝F

;

whereL˝E andL˝F are regarded as trivial simplicialA-modules. Now, the top horizontal arrow induces
quasi-isomorphisms on each line, using the trivial case and the fact that if X 2 Simpl.T /, M 2A -mod, we
have AX˝AM ' ZX˝ZM , where' denotes “quasi-isomorphic.” If L is flat, or if E and F are flat, then
the vertical arrows induce quasi-isomorphisms on each column. Then, we can use the spectral sequence of
bicomplexes to find that the lower horizontal arrow also is a quasi-isomorphism.

Using Lemma A1, if f;g are arrows inD�v .A/ that are invertible inD�
hv
.A/, then f

L
˝g is also invertible

in D�
hv
.A/. In other words, the functor

L
˝ WD�v .A/�D

�
v .A/!D�v .A/ induces a functor

L
˝ WD�hv.A/�D

�
hv.A/!D�hv.A/;

which by restriction induces a functor

L
˝ WD��hv

.A/�D��hv
.A/!D��hv

.A/:

We now define

`
˝ WD�.A/�D�.A/

L

˝
�!D�hv

.A/
�
�!D�.A/: (12)

Proposition A2. Let E and F be A-modules. The projective object of D�.A/ given by limL˝M taken in
the filtered category of quasi-isomorphisms L! E, M ! F of Hot�.A/ is essentially constant with value

E
`
˝F . It is the left derived functor of˝ W Hot�.A/�Hot�.A/! Hot�.A/ in the sense of §1.4.4 of [1].
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Proof. It suffices to observe that the quasi-isomorphisms L! E (resp. M ! F ) with L (resp. M ) flat
form a cofinal system (if P is any A-module, FA.P /! P induces, by Eilenberg-Zilber and a spectral
sequence of bicomplexes, a quasi-isomorphism �FA.P /! P , and �FA.P / is a flat A-module); on the

other hand, for L (resp. M ) flat we have L˝F (resp. E˝M/'E
`
˝F .

Remark. If A is trivial of value ƒ, then E
`
˝AF 'E

L
˝ƒF , which follows from Eilenberg-Zilber.

Similarly, given a morphism A! B of simplicial rings of T , we can define

B
`
˝A� WD�.A/

B
L

˝A�
����!D�hv

.B/
�
�!D�.B/;

and this functor is also a left derived functor of B˝A� W Hot�.A/! Hot�.B/; the proof is analogous to
Proposition A2. We then have

Proposition I.3.3.4.4. Let n 2 Z. For E 2D�.A/, F 2D�.B/, there exists a canonical functorial isomor-
phism

Extn
B.B

`
˝AE;F /

Š
�! ExtnA.E;F /: (13)

Proof Sketch. It is enough to do the case nD 0. This is because we have a commutative diagram in cate-
gories of triangles and “true” triangles of A and B , see §I.3.4.3 of [1]. We can suppose E is flat, so we have

B
`
˝AE! B˝AE. The canonical isomorphism

HotB.B˝AE;M/Š HotA.E;M/

gives, after passing to the limit over the quasi-isomorphismes F !M , the desired isomorphism.

The final result is an extension of the above to simplicial rings. Let A be a simplicial ring and B an
A-algebra. The standard free resolution PA.B/ induces by passing to diagonal subobjects and by Eilenberg-
Zilber and a spectral sequence of bicomplexes quasi-isomorphisms of A-algebras �PA.B/! B . This
algebra is free term-by-term, hence in particular flat as an A-module.

Proposition (Künneth). Let B;C be A-algebras. The projective object of D.A -alg/

B
`
˝AC ´ limP ˝AQ;

where the limit is taken over quasi-isomorphisms P ! B , Q! C of Hot.A -alg/, is essentially constant

of value P ˝AC (resp. B˝AQ) for P (resp. Q) flat over A. It follows that the functor
`
˝A WD.A -alg/�

D.A -alg/!D.A -alg/ is the left derived functor of˝A W Hot.A -alg/�Hot.A -alg/! Hot.A -alg/.

For a proof, see I.3.3.5.2 of [1].

18


	Introduction
	Notation and Basic Definitions
	The Cotangent Complex
	The Fundamental Theorem
	Deformation Theory
	Appendix

