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1 Introduction
This note concerns various incarnations of Dijkgraaf-Witten (DW) theory in low dimensions, as well as a
way to construct DW theory in any dimension n 2 N. DW theory was conceived as a finite gauge group
generalization of Chern-Simons theory, which since then has served as a useful toy model for Chern-Simons
and topological quantum field theories (TFTs) in general. Since the gauge group is finite, many spaces
which are in usual Chern-Simons theory infinite-dimensional and unwieldy, such as the moduli space of
flat connections on principal G-bundles on some “spacetime” 3-manifold M (here G is the gauge group).
In DW theory, this moduli space becomes just Map.M;BG/, which as we will see in §2 is “finite” in key
ways, allowing it to be analyzed easily. As a taste, the idea is that the components of Map.M;BG/ are
themselves classifying spaces of finite groups.

We will focus on DW theory by using the cobordism hypothesis formulation of TFTs, attempting to give
a rigorous definition and examples of calculations in DW theory in any dimension n 2 N. Before defining
n-dimensional TFTs, we need to make a technical aside. Let M be a manifold of dimension m� n. An n-
framing of M is a trivialization of the vector bundle TM ˚Rn�m, where Rn�m denotes the trivial bundle
on M of rank n�m. Let Bordfr

n denote the bordism .1;n/-category whose k-morphisms are given by
n-framed k-manifolds, where k � n. An n-dimensional TFT is a symmetric monoidal functor

Z W Bordfr
n! C;

where C is some suitable symmetric monoidal .1;n/-category. Note that the monoidal operation in the
former category is just disjoint union. The cobordism hypothesis then states that the mapping Z 7! Z.pt/
gives a bijection between the set of isomorphism classes of symmetric monoidal functors Bordfr

n! C and
the set of isomorphism classes of fully dualizable objects of C. In other words, we have

Theorem (Cobordism Hypothesis). The evaluation functor Z 7!Z.pt/ induces an equivalence

Fun˝.Bordfr
n;C/! zC

of .1;0/-categories. Here, Fun˝ denotes the .1;0/-category of symmetric monoidal functors between
its arguments, which are .1;n/-categories. zC denotes the underlying .1;0/-category of C obtained by
throwing out all non-invertible morphisms of C.

Remark. Although we will only be using it implicitly in this note, we will actually use a slightly modified
version of the above theorem. Let G be a topological group acting continuously on a topological space X .
Define the homotopy fixed set XhG as the space of G-equivariant maps HomG.EG;X/. Further, notice
that the group O.n/ acts on Bordfr

n by change of framing; hence, it also acts on zC.
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Theorem 2.4.26 [7]. Cobordism Hypothesis for SO.n/-manifolds. Let C be a symmetric monoidal
.1;n/-category with duals. There is then a canonical equivalence of .1;n/-categories

Fun˝.BordSO.n/
n ;C//! zChSO.n/:

In other words, we consider theories of oriented manifolds.

Although the rigorous definitions in this note will follow the framework of the cobordism hypothesis,
we will throughout attempt to connect back to the physical picture. Originally, DW were attempting to
construct finite gauge group theories which generalize the 3-dimensional Chern-Simons action

k

8�2

Z
tr.F ^F /:

Such actions are classified in dimension n 2 N by Hn.BG;R=Z/ D HnC1.BG;Z/ (equality is given by
the homology sequence associated to Z! R! R=Z); see [1] for more details. Thus, DW reasoned that
finite gauge group theories generalizing such actions will also be classified in this way. Just as Chern-
Simons theory “counts G-bundles on 3-manifolds,” DW theory was conceived as a physical theory where
the partition function, i.e. our functor Z evaluated on n-manifolds, counts G-bundles, or rather G-bundle
isomorphism classes. The reason we only want isomorphism classes is because we mod out by gauge
equivalence in the path integral. Thus, whatever we assign to points, we better get that Z.M n/ counts
G-bundle isomorphism classes.

A G-bundle for a finite group G can be defined as follows. Take a covering map P !M and ask for
a free G-action on P such that P=G ŠM . Further, the group G acts discretely since it is discrete, so
it follows by Exercise I.7.7.5 from [3] that this data defines a map �1.M/! G. Recall that in order for
this map to be well-defined, we choose base points in M and P . Further recall that if we don’t choose
a base point in P , then different choices will be the same map up to conjugation by elements of G (§I.7
[3]). Hence, isomorphism classes of G-bundles, i.e. equivalent maps �1.M/!G, are given by conjugacy
classes of such maps under G-action. We should thus be able to reconcile our formal calculations of Z.M/

for n-manifolds M by just counting conjugacy classes of maps �1.M/! G. Physically, the partition
function should assign vector spaces to closed .n� 1/-manifolds N ; these should be the Hilbert spaces
of all possible states of theories that have a spacetime with boundary N . In particular, if M is an n-
manifold with boundary N , then it will have associated to it a state vector which lives in Z.N/. Since our
fields are just maps �1.M/! G, the quantum state vector should just be a balanced superposition of all
possible states, i.e. over all possible field configurations. Each field has a weight, a probability, given by the
reciprocal of the order of its automorphism group (i.e. of its gauge equivalence class). These considerations
should also arise from the rigorous definitions which we will give.

2 1-dimensional DW Theory
In discussing DW theory, we will slowly work our way up via examples. Let’s start with the most basic
example, n D 1. In this case, our theory only has points and 1-manifolds. In particular, objects in our
theory are just disjoint unions of points. Whether we choose to work with oriented or framed manifolds, in
either case we end up with two versions of point: ptC and pt�, corresponding to the two different choices
of orientation or framing. The category C for DW theory in 1 dimension is just VectC, the category of
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complex vector spaces under tensor product, so to closed 1-manifolds we assign complex numbers and
to 1-manifolds with boundary we assign vectors in Z.ptC/. Leaving this vector space unknown for now,
notice that we can use the interval which connects ptC to pt� as a map ; ! ptCtpt� and vice-versa.
Thus, we have that the interval gives a map

C!Z.ptC/˝Z.pt�/

or a map

Z.ptC/˝Z.pt�/! C:

There is thus a canonical bilinear pairing of Z.pt�/ with Z.ptC/; moreover, it is perfect. Indeed, this
follows because we have the coevaluation C!Z.pt�/˝Z.ptC/, which gives us a composed map

C!Z.pt�/˝Z.ptC/! C:

Tensoring this with Z.ptC/_ gives a map

Z.ptC/
_
!Z.ptC/

_
˝Z.ptC/˝Z.pt�/!Z.pt�/;

and indeed this map must be inverse to the map Z.pt�/!Z.ptC/
_ induced by the pairing. It follows that

they are isomorphisms, soZ.pt�/DZ.ptC/_. Now,Z.S1/D dimCZ.pt/, since we can view S1 as a map

;! pttpt!;;

so that Z.S1/ is a map

C! V ˝V ! C;

where V DZ.pt/. Identifying V with its dual, we can write End.V /D V ˝V _, so that we are mapping to
the identity endomorphism of V with the first map, and then taking its trace with the second, since V is fully
dualizable, hence finite-dimensional. This number determines the theory completely up to isomorphism.

Now that we’ve gone through the generalities for nD 1 theories, we can begin DW theory proper. We
will implement Z by writing it as a composition

Z W Bordfr
1 ! Fam1.VectC/! VectC;

where Fam1.C/ denotes the .1;1/-category of finite groupoids X equipped with local systems X ! C;
similarly, morphisms are also equipped with functors to C. Recall that a local system is by definition a
functor out of the fundamental groupoid of a space, where 1-morphisms are thought of as paths in the
space, to some category. Homology with local coefficients (a generalization of homology with coefficients)
can then be defined as a colimit of this functor (this just follows from the additivity properties of homology
with respect to disjoint unions). Similarly, cohomology is a limit. Notice that in the case of a trivial local
system, where morphisms are all sent to the identity and objects to a single object in the target category,
taking a limit is just taking global sections with coefficients valued in the target object. We will exclusively
focus on the case of trivial local systems in this note. A groupoid is finite if there is a finite number of
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inequivalent objects and each object has a finite automorphism group. In dimension 1, we can describe
Fam1.VectC/ explicitly: An object is a finite groupoid and a 1-morphism C WX ! Y is a correspondence

C

X Y

:

Composition of morphisms is by homotopy fiber product, and cartesian product gives us a symmetric
monoidal structure. If we attach to each manifold M the finite groupoid of G-bundles on M , i.e. the
space X DMap.M;BG/ (it is finite since G is), we can upgrade this attachment to a functor

BunG W Bordfr
1 ! Fam1;

where Fam1 with no argument denotes the same category as before without the extra data of functors to C.
Now, suppose we can lift BunG to a functor which fits into a commutative diagram

Bordfr
1 Fam1.VectC/

Fam1

I

BunG

where the functor on the right is just the forgetful functor. Given such a functor I , it assigns not only the
finite groupoid of G-bundles to a manifold but the groupoid along with a functor to VectC. Now, we can
implement the partition function by “summing over G-bundles,” i.e. via a functor

Sum1 W Fam1.VectC/! VectC:

Formally, this functor will be a colimit: Given the groupoid X DMap.M;BG/ and a functor F W X !
VectC, Sum1.X/ D colimx2X F.x/. Note that in VectC we can evaluate this as either the limit or the
colimit (they coincide). Our partition function is

Z D Sum1 BI:

Now, let � W G ! U.1/ be an abelian character. Note that � comes from the physical description of DW
theory. The generalization of the Chern-Simons action to 1d is given by formally replacing this action by
a holonomy �.g/, which we assign to principal G-bundles on 1-manifolds, i.e. on circles. Here, g is the
image of 1 under the homomorphism �1.S

1/ D Z! G which defines the bundle. It indeed classifies 1d
DW theories, as it is a nontrivial theorem (see Theorem 3 below) that Hom.G;U.1// Š H2.BG;Z/. We
demand that our theory sends the point

ptC 7! .BG! VectC/;

i.e. the functor I takes the point to the functor from the groupoid Map.ptC;BG/D BG! VectC, thought
of as an element of Fam1.VectC/. This functor takes � 7! C and is the homomorphism � on morphisms;
explicitly, given an element g 2 G, i.e. a morphism, �.g/ acts on C in the natural way. We thus have an
equivariant vector bundle over the point G!�, which is given explicitly by the simplicial model for BG:

� G G�G � � � :
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Taking the colimit will give the space of G-invariant sections of this bundle. Indeed, we are taking the
colimit over the space BG D �==G of the trivial local system (i.e. we set � � 1), so we get the vector
space C, which is exactly the 0’th equivariant (complex) homology group of BG. Note that it is also the
cohomology by Poincaré duality; this is encoded in the fact that colimits and limits coincide in VectC. If
� ¥ 1, then G acts via � and a section is invariant if and only if � � 1; otherwise, there are no invariant
sections. It follows that the vector space is C if � is trivial and 0 otherwise. This is all quite trivial, and
follows from the fact that homology and cohomology satisfy strong additivity properties. For (co)homology
with coefficients (in this case in C), we have that

Hn.X/DcolimHn.X˛/
Hn.X/D limHn.X˛/;

where X D tX˛ is a disjoint union of subspaces. In the case of BG, everything is trivial, and we are just
assigning the vector space C everywhere. We will meet some more interesting examples below. Note that
the point pt� has the same vector space but with action by ��1. This is in accord with what the physical
picture gives us, which we shall now describe. Physically, DW theory is given by a partition function
which assigns to closed 1-manifolds a complex number, to the point a vector space, and to 1-manifolds
with boundary an element of the vector space. The number it should assign to a closed 1-manifold is the
number of the G-bundle isomorphism classes on it, weighted by their automorphisms, and the vector space
to the point should be that generated by the isomorphism classes of G-bundles on it. Since all G-bundles
on the point are isomorphic, we have that the vector space is just C. Let’s compute what happens on some
1-manifolds.

Example 1. Interval Between Two Points. First, consider an interval connecting two copies of a point.
We have the following correspondence

Map.Œ0;1�;BG/D BG

Map.0;BG/D BG BG DMap.1;BG/

;

where Œ0;1� denotes the interval bordism and we no longer distinguish between point orientations since
the vector spaces are isomorphic. Now, Œ0;1� gives us a map C! C, and this map is just multiplication
by a number. We claim that this number is the number of G-bundles on Œ0;1�. This will follow from the
functorial description of DW theory above. Starting with the G-bundle on the initial point, we pull it back
to Map.Œ0;1�;BG/ and then push it forward. But since Œ0;1� is contractible, there is only one G-bundle
isomorphism class on it. Thus, we are just multiplying the original vector space by 1 to go to the new vector
space, i.e. the map C! C is just the identity. Alternatively, we have two local systems (one on each BG)
which are the same; call them F as before. Since BG is connected, F has constant value equal to the vector
space C. For each x 2Map.Œ0;1�;BG/, we have a map '.x/ W F.p1.x//! F.p2.x///, where pi are the
projections—in this case isomorphisms. We thus have a map

Sum1.Map.Œ0;1�;BG/;'/ W Sum1.BG;F /! Sum1.BG;F /;

i.e. a map C! C.
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Proposition 1. This map is given by X
Œx�2�0.p1

�1.�//

'.x/

jAut.x/j
;

where the sum is taken over all equivalence classes of objects in the fiber of p1 over � 2 BG.

Proof. Notice that any fiber p1�1.�/ is mapped to C via F Bp1. Thus, to take the limit

lim
x2X

'.x/;

where X DMap.Œ0;1�;BG/, it suffices to take the limit of the maps ' over just one of these fibers; more-
over, all fibers are identical. The limit is explicitly given by just composing the maps obtained by composing
with ' the projections fpbjb 2 BGg which are given by the limit Sum1.BG;F /, thus obtaining a map be-
tween the limits Sum1.BG;F /. All these projections are also the same map, the identity, since FgD id for
all g 2 G. Now, since we have a local system, we may as well take the connected components of the fiber
instead of its elements. So far, we’ve explained all pieces of the expression given except for the denominator
jAut.x/j. The structure of the connected components of a given fiber are as follows. A G-bundle over the
interval with value � at the point 0 can have any value g� at the point 1, and the number of non-isomorphic
G-bundles, equivalently the number of non-homotopic maps Œ0;1�! BG, j�0Map.Œ0;1�;BG/j, will be
given by the number of conjugacy classes in G. Now, the automorphism group of such a bundle will be
its centralizer, as each bundle isomorphism class is given by its conjugacy class. Thus, we are reduced to
taking a sum X

Œg�2conj.G/

id

jC.g/j
;

where C.g/ denotes the centralizer of g in G. But by Lagrange’s theorem we have jG=C.g/j D jŒg�j, so
that this sum is the same as taking a sum over G and weighing it by 1=jGj. Thus, we again get exactly one
multiple of the identity map C! C, hence the number 1.

Remark. Notice that the proposition applies not just to this bordism, but to any general one. More-
over, it holds even more generally for a correspondence between arbitrary finite groupoids X and Y in
Fam1.VectC/.

This result also follows from the physical “counting G-bundles description.” Indeed, we get a map
Z.Œ0;1�/ from Z.0/ D C! C D Z.1/. To see its the identity, use the arguments at the beginning of the
section to see that this map is the same map as the map C! C˝C, which must be 1 7! 1˝ 1 (since we
have the perfect pairing C˝C! C).

Similarly, we have

Example 2. S1. As before, Z.S1/ gives us the trace of the identity endomorphism of C, i.e. it gives
us the number 1. But we can also understand this as the number of G-bundle isomorphism classes over
the circle weighted by the reciprocal of the order of their automorphism group. Indeed, �1.S1/ D Z,
and Hom.Z;G/ Š G as sets; hence, there are jGj G-bundles. Isomorphism classes of G-bundles are
equivalently conjugacy classes of maps ' 2Hom.Z;G/, and Aut.'/D C.'/, the centralizer of ' in G. So
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we take a sum over conjugacy classes of maps weighted by the orders of their automorphism groups, i.e.
by the orders of their centralizers:

Z.S1/D
X

Œg�2conj.G/

1

jC.Œg�/j

D

X
g2G

1

jGj

D 1

for � � 1. The second equality follows since the number of elements in a conjugacy class is equal to
jGj=jC.Œg�/j (since the stabilizer of a class under conjugation is its centralizer). We’d like to reconcile this
with the functorial description above. There is not much to do, since S1 can be viewed as a map

;! ;;

so we have the following diagram.

Map.S1;BG/

Map.;;BG/D � � DMap.;;BG/

:

As before, we assign the vector space C to the left point, pull it back to obtain a local system which is
constant with value C on X DMap.S1;BG/, and then sum over all the components of �0.X/ (dividing
by their fundamental groups/automorphism groups) to obtain a number multiplying C. But this number is
just jGj=jGj D 1, so our map C! C is just multiplication by 1 D Z.S1/, the number of G-bundles on
S1 weighted by their automorphisms. Alternatively, this also follows from the equivariant vector bundle
description. We are taking the limit of H0.Œg�IC/, where Œg� 2 conj.G/, over conj.G/, to obtain the space
of sections H0.X IC/. Equivalently, this can be rephrased in terms of the colimit of homology groups.

3 2-dimensional DW Theory
Now, let’s move on to nD 2, where there is much more structure. The categories in question are .1;2/-
categories, which we will continue to just think of as ordinary 2-categories. Note that Fam2 is just the
2-category of finite groupoids and correspondences where 2-morphisms are correspondences between 1-
morphisms, i.e. Famk D ��kFam, where Fam is the1-category of finite groupoids and correspondences
and ��k is the k-truncation functor. As before, we would like to implement the partition function Z as a
composition of functors

Z W Bordfr
2

I
�! Fam2.Alg/

Sum2

���! Alg;

where Alg is the 2-category of algebras, bimodules, and intertwiners. Composition of bimodules is given
by tensor product over the “middle” algebra. Composition of bimodules is given by tensor product over the
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“middle” algebra. As before, Sum2 is just a colimit (or limit; they coincide) of the local system over the
groupoid assigned to a bordism. We claim that

Z.pt/D CŒG�;

the complex group algebra of G. Note that this can indeed be viewed as a category: A complex algebra
is an object in the 2-category Alg; thus, it together with its bimodules form a category. Let’s see how we
can obtain this from the formalism developed in the previous section. The groupoid in question is as before
BG, and it comes equipped with a local system F valued in Alg, the 2-category described above. As before,
to the point � is assigned C, now thought of as an algebra object in this category. To a 1-morphism g 2G,
we assign the .C;C/-bimodule Cg DC, and to the identity 2-morphisms in BG we assign the identity map.
Note that this is the trivial local system; there are no interesting 1- or 2-morphisms. Indeed, this corresponds
to the trivial element of H3.BG;Z/, which classifies central extensions of G by U.1/. A nontrivial central
extension will give a twisted group algebra, where there are now isomorphisms Cg˝Ch! Cgh which in
general depend on g and h. Similarly, associativity will no longer be on the nose, but only up to associator
isomorphisms. We will not consider this in this note; see [2] for details. Then, Z.ptC/ is the 2-colimit over
BG of this functor, which can again be computed as the 2-limit: They are both just (suitable generalizations
of) direct sum in this category (since our groupoids are finite). Recall that a 2-limit is a limit where we
require that the cones commute only up to 2-isomorphisms and the universal property gives an equivalence
of categories rather than an isomorphism of sets. Let’s get the answer Z.pt/ D CŒG� by calculating this
limit.

Proposition 2. lim
b2BG

F.b/D CŒG�.

Proof. We will first show that CŒG� forms a cone over F . Given the object � 2 BG, it is mapped to C via
F , and we have a map CŒG�!C. Given g 2G viewed as a map � 7! �, we need to show that the mapping
CŒG�! C associated to g� is the same as that associated to � composed with the mapping Fg D Cg . But
indeed, tensoring with the bimodule C over C gives the original .C;CŒG�/-bimodule we started with, so that
we have one map CŒG�! C in Alg. Thus, we do indeed have a cone over F . We now need to show that it
is universal, which in the 2-categorical sense means that the category of .CŒG�;A/-bimodules for any other
cone A 2 Alg is equivalent to a category of .Cg ;A/-bimodules. Suppose given another cone A 2 Alg and a
family of .C;A/-bimodules parametrized by BG. Given one of these bimodules, we construct a .CŒG�;A/-
bimodule by asking that the original C-action now acts according to the .C;CŒG�/-bimodule action which
we assign to CŒG�. Said differently, for any other coneA, the category of .CŒG�;A/-bimodules is equivalent
to the category of (right) A-modules N along with a family of A-module isomorphisms Cg˝N ŠN . It is
this family which encodes the different actions of C on N induced by its left CŒG�-module structure given
by the cone CŒG�, hence giving us a .CŒG�;A/-bimodule exhibiting CŒG� as the limit in question.

The cobordism hypothesis asserts, and we will now show, that we can recover the value of Z on any
higher-dimensional manifold. Let’s start with 1-manifolds. For any 1-manifold M , Z.M/ is indeed given
by a vector space, as we can view it as a morphism from the empty set to itself. As before, Z.;/ D C,
since the empty collection of 1-manifolds is a unit object in Bordfr

2 and C is the unit object under tensor
product of algebras. Now, since Z.;/ D C, Z.M/ is then a .C;C/-bimodule, in other words, a complex
vector space. We would like an analog of Proposition 1 which will allow us to compute Z.M/ as a certain
(1-categorical) limit. The 1-dimensional story goes through in a similar way here: Given the algebras
associated to points, CŒG� 2 Alg, we can view the path integral on the interval Œ0;1� as a map CŒG�!CŒG�,
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i.e. as a .CŒG�;CŒG�/-bimodule. Explicitly, for each x 2 X DMap.Œ0;1�;BG/ 2 Fam2.Alg/, we have a
map '.x/ W F.p1.x//! F.p2.x//. As before, the path integral Z.Œ0;1�/, i.e. the bimodule in question, is
computed as a limit

Sum2.X;'/D lim
x2X

'.x/:

Notice that this limit is now taken in the category of .CŒG�;CŒG�/-bimodules. We take the limit over X ,
really over �0X , which as before has jconj.G/j elements. Thus, we get that we obtain a single map '
as before which is the identity, i.e. we obtain the .CŒG�;CŒG�/-bimodule CŒG� (since tensor product over
CŒG� should give us back the original bimodule). The sum we obtain is exactly the same as in Example 1.

As before, we have

Example 3. S1. We would like to computeZ.S1/ as a 1-categorical limit, but, before doing so, let’s see how
to get the vector space by thinking about the partition function from the physical point of view. G-bundles
on S1 up to isomorphism are given by conjugacy classes of maps �1.S1/! G. Now, Hom.Z;G/Š G as
sets, so Z.S1/ is the vector space generated by conjugacy classes of G; equivalently, this is the space of
class functions on G, or maps G! C up to conjugation. The representation theory of finite groups tells us
that this vector space is

Rep.G/˝ZC;

where Rep.G/ is the representation ring of G; see Proposition 2.30 and the comments below it in [4].
The limit definition gives us exactly the same answer, since we are asked to take a limit over the space

�0X D �0Map.S1;BG/, but X has exactly one connected component for each G-bundle isomorphism
class, so we get a sum over .C;C/-bimodules C, and we count each C as many times as there are connected
components in X . We thus get the same answer: the .C;C/-bimodule, or vector space,

CŒG�G;

the conjugation invariant elements of CŒG�.
There is another way to think about Z.S1/, namely as the composition ; ! ptCtpt� ! ;. We

thus have that Z.S1/ is the tensor product of a .CŒG�˝CŒG�op;C/-bimodule with a .C;CŒG�˝CŒG�op/-
bimodule. Note that these bimodules are CŒG� again, as the argument above for Z.Œ0;1�/ shows. Composi-
tion of bimodules is given by tensor product over the middle factor, so we get that

Z.S1/D CŒG� ˝
CŒG�˝CŒG�op

CŒG�:

Recalling that the opposite algebra is given by multiplication in the reverse direction, we get that this is
exactly the quotient of CŒG� by the subspace generated by all commutators; hence, it is exactly Z.S1/ as
obtained above, CŒG�G .

Let’s now do a surface.

Example 4. S1�S1. Consider the torus T D S1�S1. Physically, counting G-bundles on the torus up to
isomorphism is counting conjugacy classes of maps �1.T /D Z˚Z!G. Explicitly, the number isX

conj.G/3Œ'�WZ˚Z!G

1

jAut.'/j
D

X
.Œg�;Œg 0�/2conj.G/�conj.G/

Œg;g 0�D1

1

jC.fg;g0g/j
D

X
g;g 02G
Œg;g 0�D1

1

jGj
;
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where the second equality follows by Lagrange’s theorem as before. We would like to obtain this number
by starting from the group algebra CŒG�. Following our work in Example 2, we again get a correspondence
in Fam2.Alg/, and this gives us in an exactly analogous way a map C!C which is the limit of the various
maps '.x/ W F.p1.x//! F.p2.x// associated to x 2 X D Map.T;BG/ and the local systems F (now
valued in Alg) on BG. But indeed this limit just counts G-bundles up to isomorphism by definition of X ,
as before, weighting them with the order of their automorphism group G; the argument of Proposition 1
goes through in the same way. Note that indeed Z.T /D dimCZ.S

1/, asX
g;g 02G
Œg;g 0�D1

1

jGj
D

X
g2G

jC.g/j

jGj
D

X
Œg�2conj.G/

1:

This is something expected from a TFT, namely that Z.S1�M/D dimCZ.M/.

It is now straightforward to compute other surfaces.

Example 5. Genus g Surface. Let †g be a genus g connected surface. Then its fundamental group is just
�1.†g/D˚

gC1
iD1 Z. Hence,

Z.†g/D
X

g1;:::;ggC12G
Œgi ;gj �D1 8i;j2f1;:::;gC1g

1

jGj
:

As a special case, if g D 0, so †0 � S2, then Z.S2/D 1. Physical considerations suggest that Z.S1�M/

for M a 1-manifold should give the dimension of the vector space Z.M/. Since 1-manifolds are just
disjoint unions of circles, this example should cover all such dimensions.

Lastly, let’s do some surfaces with boundary, say

Example 6. S1�S1 with a Hole. Let M now be the torus with a hole. Our TFT should assign a vector
in the vector space Z.S1/DZ.@M/. Starting with the physical description, this vector should be given by
maps �1.M/! G, where �1.M/D ha;bi is just the free group on two generators (the relation Œa;b�D 1
no longer needs to be satisfied, as the 2-cell from which it arises can no longer be traversed in the manner
aba�1b�1). We thus get that isomorphism classes of principal G-bundles on M are the same as giving two
elements of G up to conjugation. Hence,

Z.M/D
X

.Œg�;Œg 0�/2conj.G/�conj.G/

Œgg0�

jC.fg;g0g/j

which is a vector in CŒG�G D Z.S1/. The reason we take the multiple Œgg0� is because we really want to
take a vector in Z.S1/ that corresponds to the object Œg�˝ Œg0�. The multiplication map then gives us the
result.

We should be able to get the same answer by thinking about M as a map ; ! S1, so that Z.M/ is a
homomorphism of .C;C/-bimodules, i.e. of vector spaces, C!CŒG�G . It is thus a linear map, so its value
is completely determined by where it sends 1 2 C, and we claim that this vector is the vector Z.M/ we
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found above. We should think of this map as a correspondence

Map.M;BG/

� Map.S1;BG/

:

In this case, we need to figure out what the maps '.x/ W C! CŒG�G are, where x 2 X , associated to the
correspondence above. Then, we should just take the limit limx2X '.x/. For this, it is easiest to go one
step further, and think instead of M as a map ; ! S1tS1! S1. The first map we have already met in
Example 4. Namely, the torus can be thought of as a map ; ! S1tS1! ;, so that the result from that
example should be obtained as the image of 1 under the composition

C! CŒG�G˝CŒG�G! C:

The last map is just the trace pairing on the underlying algebra CŒG�, so that

1 7!
X

.Œg�;Œg 0�/2conj.G/�conj.G/

Œg�˝ Œg0�

jC.fg;g0g/j

gives the first map. The condition that g;g0 commute is given by the fact that the trace pairing vanishes
on commutators, which gives another way to derive the result of Example 4. We can now compute what
happens in the case ofM , since the second map in its composition is just multiplication in CŒG�G , inherited
from the natural multiplication on CŒG�. Hence, we have

C!CŒG�G˝CŒG�G! CŒG�G

1 7!
X Œg�˝ Œg0�

jC.fg;g0g/j
7!

X Œgg0�

jC.fg;g0g/j
:

The individual maps '.x/ are just the individual pieces of the sum, and taking the limit sums up all of the
maps weighted by their automorphism groups, the denominators.

4 3-dimensional DW Theory and the General Case
Rather than begin with the 3-dimensional story as we have done in the previous two sections, we will instead
describe how to construct DW theory (at least in principle) in any dimension n 2 N and then show how the
3-dimensional DW theory is a special case of this construction, focusing on Z.pt/ and Z.S1/. We need to
define higher algebra objects which encapsulate the constructions of the previous two sections. We define
an m-algebra as an algebra object in the symmetric monoidal m-category of .m�1/-algebras. Morphisms
between such m-algebras are then bi-module objects in the category of .m�1/-algebras. A 0-algebra is a
complex vector space, so that morphisms between 0-algebras are linear maps. The 2-category Alg is the 2-
category of 1-algebras, familiar from the previous section. We claim that in any dimension n 2N, the target
of the classical theory, i.e. the codomain of I , Famn.C/ has CD Algn�1, the n-category of .n�1/-algebras.
Indeed, for n 2 f1;2g this is the case.
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Example 7. 2-algebras. A 2-algebra is an algebra A together with an .A;A˝A/-bimodule M which
defines the 2-multiplication and a left A-module E which defines the identity. There are associativity and
unit intertwiners, 2-morphisms in the category of algebras, which satisfy compatibility rules, see [2] for
details. A morphism of 2-algebrasA!B is then a .B;A/-bimodule in the category of algebras—an algebra
N and an .N;B˝N/-bimodule P along with an .N;N ˝A/-bimodule Q with compatibility morphisms
which give the bialgebra structure. The key facet of this construction is that the 2-algebra structure on A
defines a monoidal structure on A-mod, the category of left A-modules. In particular, the module functor
A 7! A-mod is fully faithful, so that any 2-algebra can be equivalently thought of as a monoidal category,
and this is what people usually do when they think of 3-dimensional DW theory. For example, given a
Hopf algebra A, it becomes a 2-algebra under the multiplication A˝A 2 A-mod. We can write AD C.G/
for the Hopf algebra of a finite group with pointwise multiplication and comultiplication induced from the
Hopf structure, then the category A-mod is the category of vector bundles over G. Thus, the monoidal
category defined by the Hopf 2-algebra is precisely the category VectŒG�: Its objects are complex vector
bundles over G and morphisms are linear vector bundle maps. It is naturally a fully dualizable object in a
certain 3-category, and this 3-category is exactly A-mod. The monoidal structure is defined by convolution
of vector bundles in the following way.

To define a 3-dimensional DW theory, we need to generalize the Chern-Simons action, and such gen-
eralizations are classified by elements in H4.BGIZ/ D H3.BGIR=Z/. Define a 2-cocycle on G with
values in hermitian lines as a pair .K;�/ consisting of a hermitian line bundleK!G�G, for each triple
x;y;z 2G an isometry

�x;y;z WKy;z˝K
�1
xy;z˝Kx;yz˝K

�1
x;y! C;

and a cocycle condition

�y;z;w�
�1
xy;z;w�x;yz;w�

�1
x;y;zw�x;y;z D 1

for each quadruple x;y;z;w 2G.

Remark. Recall that group cohomology with coefficients in an abelian group A can be defined as

Hn.GIA/D ExtnZŒG�.Z;A/;

where we view Z and A as ZŒG�-modules. However, there is another definition, where group cohomology
can be defined as the set of homomorphisms from Gn! Bn�1A, obtained from the simplicial model for
BG D�==G (see nLab). From here it becomes clear that a 2-cocycle is a line bundle overG�G with these
conditions. Notice that this immediately gives us the following theorem, which explains why 1-dimensional
DW theories are classified by abelian characters. The same result can be obtained by noting that the chain
complex associated to AŒBG�, where BG denotes the simplicial set �==G, is the canonical chain complex
used to compute the group (co)homology with coefficients in A. In particular, we have formulas

H�.GIA/ŠH�.BGIA/D H�.jBGjIA/;
H�.GIA/ŠH�.BGIA/D H�.jBGjIA/;

where jBGj is the geometric realization of the simplicial set BG. See §8.2 of [10] for more details.

Theorem 3. Hom.G;U.1//D H2.BGIZ/.

https://ncatlab.org/nlab/show/group+cohomology#InLowDegree
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Proof. Since H2.BGIZ/D H2.GIZ/ by definition, and BZD U.1/, we have that H2.BGIZ/ is given by
Hom.G;U.1//.

Proposition 4. H3.BGIR=Z/ is the set of isomorphism classes of 2-cocycles .K;�/ on G with values in
hermitian lines.

Proof. Choosing kx;y 2Kx;y of unit norm, the object

!x;y;z D �x;y;z.ky;zk
�1
xy;zkx;yzk

�1
x;y/

is a 3-cocycle with values in R=Z. The resulting element of H3.BGIR=Z/ is independent of the choices
fkx;yg and of the representative .K;�/ in an equivalence class. Indeed, the isometries � are equivalently
isometries of R2, so they are rotations, reflections, and/or translations. But these cannot depend on the
choices of unit norm elements in the argument. Similarly, another representative .K 0;� 0/ in the equivalence
class of .K;�/ has different isometries in general, but if it is isomorphic to .K;�/, then the isometries
themselves differ by an isometry of C. This will change the cocycle by this isometry, i.e. if � 0 D �� , then
!0 D �!. But the cocycle condition gives that this isometry must be the identity; hence, ! D !0. We now
claim that this gives an isomorphism. Indeed, it is surjective, since given any 3-cocycle !, we can take the
2-cocycle .K;�/ defined by Kx;y D C and �x;y;z D !x;y;z . It is furthermore injective, since inequivalent
2-cocycles will differ by a nontrivial isometry, hence will give different 3-cocycles.

Finally, we can define the convolution in VectŒG�. Fixing a 2-cocycle .K;�/ on G with values in
hermitian lines, if V;V 0!G are vector bundles, define

.V �V 0/y D
M
xx0Dy

Kx;x0˝Vx˝V
0
x0 :

Thus, VectŒG� is a linear monoidal category, and it is this category which is assigned to a point in 3-
dimensional DW theory. Explicitly, it is an object in the following 3-category C. Objects of C are C-linear
monoidal categories. Given a pair of such categories, A;A0, a 1-morphism is an .A;A0/-bimodule category,
i.e. a C-linear category B with a left action A�B! B and a right action B�A0 ! B which commute
with each other up to coherent isomorphism. A 2-morphism B! B0 is then a functor between bimodule
categories—it must commute with the actions of A and A0 up to coherent isomorphism. Finally, a 3-
morphism between functors F;F 0 W B! B0 is a natural transformation compatible with the isomorphisms
inherent to F;F 0.

Example 8. 3-algebras. A 3-algebra structure on A is the following. The 2-algebra structure on A makes
it a monoidal category with a 2-category of modules A-mod. The 3-algebra structure gives a monoidal
structure on the 2-category A-mod. In the case of Example 7 above, VectŒG�-modules can be tensored over
VectŒG� using the Hopf structure (note that this is only possible if we have not twisted, i.e. if the 2-cocycle
is trivial).

We would now like to define the quantization map Sumn for the classical theories defined above. Define
higher groupoids as spaces, using the simplicial set model structure [7]. In this case, 0-groupoids are
discrete sets, 1-groupoids are ordinary groupoids, i.e. K.G;1/’s. The idea is that we will linearize our
spaces and turn them into higher algebras, i.e.

Sumn W Famn.Algn�1/! Algn�1:
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The general definition is the following. The .n� 1/-algebra associated to a connected space X has as its
category of modules the .n� 1/-category of local systems of .m� 1/-algebras over X . In the case of a
based space, this is the .n� 1/-category of representations of �X on .n� 2/-algebras; for disconnected
spaces, we need only sum over components. In the sequel, let mD n�1 for notational convenience. Write
Rm.X/ for this “groupoid algebra” of local systems.

Example 9. nD 1. R0.X/ is the vector space of functions on �0X , which is exactly the space of invariant
sections of the equivariant vector bundle over the point G!� obtained in §2.

Example 10. n D 2. We get the usual groupoid algebra, which becomes the group algebra CŒG� after a
choice of base points: It is the direct sum of the group algebras of the fundamental groups of the components
of X . Note that this also follows from the discussion in §3. Notice that this is also a “vector space of
sections” in the following sense. m-algebras are .mC1/-vector spaces, which the examplesmD 0;1 show.
The groupoid X is incarnated as a K.G;1/, BG, thought of as an1-groupoid. Thus, in nD 1 we found
that the equivariant vector bundle defined by BG, G!�, can itself be viewed as a vector bundle over the
category VectC. This fancy language just says that the local system with which BG is endowed allows us
to quantize, i.e. give the sections of this bundle. In nD 1, this corresponds to just taking the sections of the
original bundle G!�. In nD 2, the same local system gives the sections of the bundle but now valued in
the category Vect2 D Alg1, so the result is now a category built out of vector spaces.

Example 11. n D 3. Note that in the generalization above, our space X can be a homotopy 2-type. In
particular, we can take X to be a K.G;2/ as a first example. It will quantize to the 2-algebra CŒG� which is
associated to the commutative group algebra CŒG�. The 2-algebra arises via its own multiplication map, and
a morphism between such objects A! B is simply a B˝A-algebra. Note that they embed into monoidal
categories by sending CŒG� to the monoidal category with one object � and End.�/D CŒG�. In the case
that X also has a �1, i.e. a twisting, then we get a “crossed product 2-algebra;” call it A. We can use the
monoidal structure on the category of modules of the underlying 1-algebra to describe A. As a 1-algebra,
A consists of the functions on �1 with values in the algebra CŒG� with pointwise multiplication. Its linear
category of modules is Rep.G/.�1/ which denotes bundles of G-representations over �1. The monoidal
category of A-modules is equivalent to Rep.G/ as a linear category but carries a non-standard monoidal
structure corresponding to convolution of characters. Now, use the fact that this category is dual (in the
sense of Fourier or Pontryagin duality; see §12.3 of [8]) to the category Vect.G�/ of vector bundles on the
Pontryagin dual group with the pointwise monoidal structure. The fact that it is pointwise follows from
the Fourier dual description. �1 then acts by automorphisms of the monoidal category Vect.G�/; if �1
acts trivially, then CŒG�.�1/ is a Hopf algebra over CŒG�, giving a 2-algebra structure. Note that as in the
previous example, we can again view the quantization procedure as giving sections of the 3-vector bundle
over Vect3 defined by the groupoid X .

We can now outline the general, inductive procedure for constructing Rm.X/. The vector space, i.e.
0-algebra, gives the finitely supported functions on the m-truncated homotopya

Œx�2�0X

�m.X;x/� � � ���1.X;x/:

The 1-algebra is the CŒ�m�-valued functions on the union of the m-truncated homotopy groups with point-
wise multiplication. The full m-algebra structure can be described via

Rm.X/D
M

Œx�2�0X

Rm�1.�xX/:
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Notice that in the case of nD 0C1, nD 1C1, and nD 2C1, this subsumes the previous discussion.

Remark. Although we haven’t considered it in this note, we can twist by cohomology classes in Hn.X IR=Z/.
We get a projective cocycle for actions of �X on .m� 1/-algebras, and the twisted group ring is the m-
algebra with the same representation category. For example, inmD 0 we get a nontrivial action of �1 on C
for each component of X , and only the invariant lines are summed up to produce the vector space, cf. §2.
If mD 1, the class gives a central extension of each �1, which is quantized to the sum of the corresponding
twisted algebras. We won’t go further than this in describing twisting, though it is possible.

Let FH be the category of spaces with finitely many, finite homotopy groups with disjoint unions,
products, and homotopy fiber products. Define the n-category FHn D ��nFH as in §3. The assignment
X 7!Rn�1.X/ can be upgraded into a symmetric monoidal functor

Sumn W FHn! Algn�1;

generalizing the Sumn defined at the beginning of this section. Although it is clear what it does on objects,
it is not immediately clear what its action on morphisms is, because Rm is the Koszul dual functor of chains
on the based loop space, so we use Koszul duality in the definition of Sumn. This Koszul duality is exhibited
by the following. The algebra of chains on the based loop space�xX can be viewed as a differential graded
coalgebra, assumed to be associative, via the cobar construction. On the other hand, the bar construction
exhibits the algebra of chains on X as a differential graded algebra. These two are Koszul dual to one
another [9]. Our map Rm is this duality functor. To a correspondence at level k, i.e. to a k-storied diagram
of spaces, we assign the colimit of the diagram of group rings.

We can describe explicitly for 1-morphisms how this works. Suppose given a correspondence

C

X Y

;

where we assume that all our spaces are connected. If they’re not, this is no issue, since different compo-
nents are handled separately. Then to C we assign

Sumn.C /DRn�1.X/ ˝
Rn�1.C/

Rn�1.Y /

ŠRn�2.F /;

where F is the homotopy fiber of C !X �Y . What this is saying is that we are free to compute Sumn by
computing the functor R in the theory one level down. The idea is that correspondences in an n-TFT can
be viewed as correspondences between correspondences in .n�1/-TFTs. Note that what we obtain in this
case is an .n�2/-algebra; the top multiplication layer has been used for the monoidal structure. The next
example shows how this works.

Example 12. Z.S1/ in 3 Dimensions. In Example 7, we claimed that Z.pt/D VectŒG�. We can compute
Z.S1/ for such a theory following the schematic of Example 3. As there, we can decompose S1 as a map
;! ptCtpt�!;, where we remark that the opposite 2-algebra toADVectŒG� is just the same 2-algebra
with the reversed monoidal operation. We thus find, as in that example, that

Z.S1/D A ˝
A˝Aop

A:
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We can also see this from the above formalism. Given a component ofX DMap.S1;BG/, i.e. a conjugacy
class in G, the homotopy fiber of the correspondence

Map.S1;BG/

� �

is just given by that component again (in general, the homotopy fiber of any connected space over the
point space is just that connected space). Applying the functor one level down to this object, i.e. in the
2-dimensional theory, we get exactly the result above for Z.S1/. Indeed, we get a sumM

Œg�2conj.G/

Rn�2.FŒg�/D
M

Œg�2conj.G/

CD CŒG�G :

Since on the level of 1-algebras CŒG�G DCŒG� ˝
CŒG�˝CŒG�op

CŒG�, and CŒG�DC.G/ as 1-algebras, we obtain

the answer above yet again.
As claimed in Example 7, A is a fully dualizable object in the 3-category C (cf. there). Thus, there is an

isomorphism AŠ A_ D Hom.A;Vect/. Explicitly, this isomorphism is given by mapping a vector bundle
over G to its fiber at the identity element, which corresponds to a bilinear form

A˝A!Vect
V ˝V 0 7!.V �V 0/0:

It thus follows that

Z.S1/ŠA ˝
A˝Aop

A_

ŠHomA˝Aop.A;A/:

In particular, we see that Poincaré duality in this setting gives us an identification of the Hochschild co-
homology of A with the Hochschild homology of A. Note that Z.S1/ is also the Drinfeld center of
A. This is the category whose objects are pairs .X;"X/ consisting of X 2 A and a natural isomorphism
"X.�/ WX˝�

Š
�!�˝X compatible with the monoidal structure:

"X.Y ˝Z/D .idY ˝"X.Z// B ."X.Y /˝ idZ/:

Lastly, note that this center is a braided tensor category. Namely, we have

Proposition 5. The center of A consists of twisted equivariant vector bundles V ! G, i.e. vector bundles
with a twisted lifting of the G-action on G by conjugation:

Lx;y˝Vx
Š
�! Vyxy�1 :

Here, L!G�G is the line bundle given by

Lx;y DK
�1
yxy�1;y

˝Ky;x:
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The cocycle condition on .K;�/ gives an isomorphism

Lyxy�1;y0˝Lx;y
Š
�! Lx;y0y;

so L can be thought of as a line bundle over Map.S1;BG/, the groupoid formed by the G-action on itself
by conjugation.

Proof. Suppose V ! G is in the center. Let V 0! G be the vector bundle which is the trivial line Cy at
some y 2G and zero elsewhere. Then the braiding gives an isomorphism

Ky;x˝Cy˝Vx
Š
�!Kyxy�1;y˝Vyxy�1˝Cy :

By the definition of Lx;y , this gives the twisted lifting in the statement of the Proposition.
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