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0 Summary
Recall that given a smooth surjective morphism in Sch, f WX! Y , we can recover Y as a derived stack by

Y Š jX�=Y j:

We also have étale, faithfully flat, etc. descent. But DAG gives us another descent property, called “formal
descent” for closed immersions of schemes. Let f W X ! Y be a closed immersion of locally noetherian
classical schemes. Define the formal completion of Y along X , �YX , which is the stack represented by the
formal scheme which is the formal completion of Y along X . We can explicitly describe this stack by�YX.R/´ Y.R/�Y.Rred X.Rred/;

where Rred´ �0.R/red.
We then have the following characterization of �YX .

Theorem 0.1 (Carlsson; Bhatt). The augmentation morphism X�=Y ! �YX exhibits �YX as the colimit of
the diagram X�=Y inside the category of derived schemes. I.e. we have an equivalence

MapStk.�YX ;Z/Š lim
�

MapSch.X
�=Y;Z/:

Remark 0.1. The noetherian hypotheses are necessary.

Remark 0.2. We have to take the colimit over the Čech nerve in the category of derived schemes. This
theorem fails if we try to do it in stacks: It is not true that any morphism S ! �YX factors locally for the
étale topology through X ! Y .

Remark 0.3. Generalizing this to Artin stacks and derived schemes is nontrivial. We will see that this is
already a nontrivial statement at the level of schemes.

Consider a smooth variety Y over a field k and a k-point y of Y . The nerve of y is simply

SpecA˝n;

where AD Symk.y
��1

Y /. Functions on the colimit of this nerve is the limit of the cosimplicial object

Œn� 7! Symy��1
Y Œ1�;

which can be identified with 7Sym.y��1
Y Œ1�/.

Remark 0.4. We have to take the completion here, as the limit of this diagram lies in the second quadrant;
hence, it involves a nonconverging spectral sequence forcing us to take the completion. We will see a
similar phenomenon when we discuss the derived de Rham complex below.
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Consider again a k-point of a scheme Y of finite type over k, and consider its derived based loop group

�yY D pt�Y pt :

The above Theorem can be reformulated as

B.�yY /Š Spf bOY;y D �Yy :

Remark 0.5. This is the algebro-geometric version of the fact that we can recover the connected component
of a topological space Y containing a point y 2 Y as the classifying space of �yY .

1 Preliminaries

1.1 Faithfully Flat Descent
1.1.1 Descent for Modules

LetA!B be a map of rings, and consider the cosimplicialA-algebraA=B�, the Čech conerve ofB under
A, given by

A=Bn D B
˝An;

where the coface and codegeneracy maps are the obvious ones (insertion of the unit and multiplication of
two factors). A B-moduleM gives rise to a cosimplicial A=B�-module A=B�˝BM . We then have ® 023F

Lemma 1.1. Suppose that f W A! B has a section s. Then for any B-module M , we have a quasi-
isomorphism M ' A=B�˝B M , where we view both as cochain complexes via cosimplicial Dold-Kan
® 019H.

Proof. This follows immediately if we can show that the section induces a homotopy equivalence between
the given complexes. Indeed, we have a homotopy equivalence B ! A=B� of cosimplicial B-algebras.
Since f sD idA, we only need to show that sf � idB . Define a homotopy hn;0D id, hn;nC1D .sf /

nC1, and
hn;i D idnC1

A �.sf /nC1�i , where

hn W B
�An
�Hom.Œn�; Œ1�/! B�An

viewed as a homotopy in the opposite category to AlgB . Note that it is indeed a homotopy, see ® 019J
Lemma 14.26.2. It then follows by formal nonsense that this defines a homotopy in AlgB in the appro-
priate way. Thus, we have a homotopy equivalence M !M ˝B A=B� in the category of cosimplicial
B-modules. (Cosimplicial) Dold-Kan preserves homotopy equivalences, so there is a corresponding one on
the associated cochain complexes. Since the associated chain complex to the constant cosimplicial object
M is just

M
0
�!M

1
�!M

0
�! �� � ;

we are done.

We now have
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Proposition 1.2. Suppose that f W A! B is faithfully flat. Then for any B-module M we have a quasi-
isomorphism on chain complexes M ' A=B�˝B M .

Remark 1.1. A map of rings is faithfully flat if B is faithfully flat as an A-module. This in turn means that
a short exact sequence of A-modules is exact if and only if its base change is exact.

Proof. Suppose we have a faithfully flat ring mapA!A0 such that the result holds forA0!B 0DA0˝AB .
It then follows that the result also holds for f . This is because .M˝AA

0/˝A0A
0=B 0�ŠA

0˝A .M˝AA=B�/.
Since A! A0 is faithfully flat, exactness of the former complex implies exactness of the latter.

Moreover, we have such a faithfully flat map. Take A0 D B and notice that B ! B 0 D B˝AB has a
section s W b1˝b2 7! b1b2. Now, use the Lemma.

1.1.2 Descent in the Simplicial Setting

Let f W A! B be a map of simplicial rings. Define the derived Čech conerve of B under A, A=B�, as
the usual Čech conerve of the map A! P for any simplicial polynomial A-algebra resolution of B (for
a canonical choice can take the standard resolution). Note that this is independent up to homotopy of the
choice of P . Now, for any M 2 Ch.A/, define the Adams completion of M along f as

CompA.M;f /´ Tot.M ˝AA=B�/:

Remark 1.2. If M D C for C 2 sAlgA=, then CompA.C;f / ' CompA.C;f ˝A idC / is naturally an E1-
algebra.

We have the immediate analogs of the Lemma and Proposition above.

Lemma 1.3. Let f WA!B be a map of simplicial rings with a section. Then CompA.M;f /'M for any
M 2 Ch.A/.

Proposition 1.4. Let f W A! B be a faithfully flat map of simplicial rings. Then CompA.M;f /'M for
any M 2 Ch.A/.

Remark 1.3. Both are proved in the same way as in the case of ordinary rings.

1.2 Properties of the Adams Completion
Let Abe a Grothendieck abelian category, and letNop

0 be the category associated to the poset of non-positive
integers. Then Fun.Nop

0 ;A/ just denotes Nop
0 -indexed diagrams in A, and D.Fun.Nop

0 ;A// is given by chain
complexes of such diagrams localized at quasi-isomorphisms. Notice that objectsK 2D.Fun.Nop

0 ;A// can
be given via a complete, separated filtration on �KD limKk 2D.A/, i.e. one such that �KD lim �K=F i �K and
\F i �K D 0. Indeed, we can view the system of homotopy kernels ker.�K!Kk/ 2D.Fun.Nop

0 ;A// as such
a filtration on �K. Lastly, notice that a cochain complexK over Adefines an objectD 2D.Fun.Nop

0 ;A// via
Kk ´ K=��kK, where ��k denotes the stupid filtration of K in cohomological degrees � k. Moreover,
we have K ' limKk, and we refer to the resulting filtration on K as the stupid filtration.

Now, given a Grothendieck abelian category A, we say that an object M 2 Fun.Nop
0 ;A/ is strict essen-

tially 0 if 9k 2 N0jMn!Mm is 0 for any n�m � k. We say that an object K 2D.Fun.Nop
0 ;A/ is strict

essentially 0 if the objects of Fun.Nop
0 ;A/ defined by Hi.K/ are strict essentially 0 for every i .
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Remark 1.4. If K 2 D.Fun.Nop
0 ;A// is strict essentially 0, then limnKn ' 0. Indeed, the limit in Nop

0 is
given by supremum; hence, the limit of each of the cohomology groups will be 0, so that �K ' 0.

Remark 1.5. Notice that being strict essentially 0 is just the appropriate analog of the trivial Mittag-Leffler
condition. This motivates the second lemma below.

Lemma 1.5. Let N �M be finitely generated modules over a noetherian ring A, and let 𝔞 �A be an ideal.
Consider the map

f W fN=𝔞nN g ! fN=.𝔞nM \N/g

in Fun.Nop
0 ;ModA/. Then f is surjective with kernel strict essentially 0.

Proof. Surjectivity is obvious. The latter assertion is given by the Artin-Rees lemma.

Lemma 1.6 (Strict Essentially 0 Systems Form an Ideal). Let A be a ring and K 2 D�0.Fun.Nop
0 ;A// a

strict essentially 0 system, and let M 2 D�0.Fun.Nop
0 ;A// another system. Then fKn˝A Mng is strict

essentially 0 with limnKn˝AMn ' 0.

Proof. Since the condition to be strict essentially 0 in particular gives us the Mittag-Leffler condition, we
then have the following short exact sequence (Theorem 3.5.8 Weibel).

1! lim
n

H�i.Kn˝AMn/! H�i.lim
n
.Kn˝AMn/! lim

n

1H�i�1.Kn˝AMn/! 1:

Since both lim and lim1 vanish for a strict essentially 0 system, it suffices to show that H�i.Kn˝AMn/

is a strict essentially 0 system for each i 2 N0. But the Künneth spectral sequence gives a finite filtration
on H�i.Kn˝AMn/ with graded pieces subquotients of TorA

j .H
�k.Kn/;Mn/ for j C k D i with j 2 N0,

k � i .

Lemma 1.7 (Quillen). Let 𝔞 � A be an ideal in a noetherian ring A, and let M be a finitely generated A-
module. Then the cone of the map fM ˝AA=𝔞

ng ! fM=𝔞nM g of objects in D.Fun.Nop
0 ;ModA// is strict

essentially 0.

Proof. By Künneth, it suffices to check that fTorA
i .M;A=𝔞

n/g is strict essentially 0 for i 2 N; moreover,
we can just shift dimensions to see that we need only check this for i D 1. Write M as the quotient of a
finite free A-module, M D F=K. We then have

TorA
1 .M;A=𝔞

n/Š ker.K=𝔞nK! F=𝔞nK/Š .𝔞nF \K/=𝔞nK;

so the statement follows from Lemma 1.5.

Proposition 1.8. Let 𝔞 � A be an ideal in a noetherian ring, and let M be a finitely generated A-module.
For any K 2D�0.Fun.Nop

0 ;ModA//, the natural map induces an equivalence

' W lim.M ˝A=𝔞n
˝Kn/

Š
�! lim.M=𝔞nM ˝Kn/:

Proof. Define F WD.Fun.Nop
0 ;ModA//!D.ModA/ as the composition of lim with f�˝AKng. Notice that

' is F applied to the natural map fM ˝A=𝔞ng ! fM=𝔞ng. Now, use the Lemmas 1.6 and 1.7 above to
finish the proof, noting that F is exact.
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Remark 1.6. Notice that the object fM ˝AA=𝔞
ng is independent of the choice of flat resolution of M used

to compute it.

Lemma 1.9. Let f W A! B be a map of rings, and view a B-module M as an A-module via f . Then
the map M !M ˝A A=B� is a homotopy equivalence of cosimplicial A-modules. In particular, M '
CompA.M;f /.

Proof. The B-action on M defines the homotopy.

Theorem 1.10 (Carlsson). Let 𝔞 � A be an ideal in a noetherian ring A, and let M be a finitely generated
A-module. There is a natural isomorphism �M Š CompA.M;𝔞/, where CompA.M;𝔞/ denotes the Adams
completion of M with respect to A! A=𝔞.

Proof. Let F 2 End.D.ModA// be the exact functor M 7! Tot.M ˝AA=.A=𝔞/�. We have an obvious
natural transformation � W id! F , and we claim that �M WM ! F.M/ is an equivalence wheneverM is an
A=𝔞n-module for any n 2N. Since both id and F are exact, we can apply them to the short exact sequence

0! 𝔞k
! A=𝔞n

! A=𝔞k
! 0

for k < n to reduce to the case nD 1 (i.e. we use a dévissage argument). But this case is handled by Lemma
1.9. Thus, for any n 2 N0 and finitely generated A-module M we have equivalences

�M=𝔞nM WM=𝔞
nM

'
�! Tot.M=𝔞nM ˝AA=.A=𝔞/�/:

Take a limit over Nop
0 to obtain the equivalence

y� W �M D limM=𝔞nM
'
�! Tot.lim.M=𝔞nM ˝AA=.A=𝔞/�//:

We have a natural map Tot.M ˝AA=.A=𝔞/�/!Tot.lim.M=𝔞nM ˝AA=.A=𝔞/�/, so we need only check
that M ˝AA=.A=𝔞/� and lim.M=𝔞nM ˝AA=.A=𝔞/�/ are equivalent in D.Fun.�;ModA// under the nat-
ural map

' WM ˝AA=.A=𝔞/�! lim.M=𝔞nM ˝AA=.A=𝔞/�/:

Now, the term at level Œm� 2� in the source is M ˝A .A=𝔞/
˝.mC1/, while in the target it is lim.M=𝔞nM ˝

.A=𝔞/˝.mC1//. We can then apply Proposition 1.8 three times:

lim.M=𝔞nM ˝A .A=𝔞/
˝.mC1//D lim.M ˝A=𝔞n

˝ .A=𝔞/˝.mC1//

D lim.M ˝A=𝔞n
˝A=𝔞˝ .A=𝔞/˝m/

D lim.M ˝ .A=𝔞/=𝔞n
˝ .A=𝔞/˝m/

D lim.M ˝ .A=𝔞/˝.mC1//

DM ˝ .A=𝔞/˝.mC1/:

Since this is exactly the source of ', we’re done.
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2 Algebraic and Derived De Rham Cohomology

2.1 The Hodge Filtration
Let X be a scheme over S , and consider the de Rham complex ��

X=S
. The Hodge-to-de-Rham spectral

sequence is given by

E
p;q
1 D Hq.X;�

p

X=S
/;

which are exactly the Hodge cohomology groups of X over S . The differential dp;q
1 is induced by the usual

differential d W �p

X=S
! �

pC1

X=S
. We call the filtration on Hn.X=S/´ Hn.R�.X;��

X=S
// induced by this

spectral sequence the Hodge filtration. It is explicitly given by

F pHn.X=S/D im
�

Hn.X;��p��X=S/! Hn.X=S/
�
;

where ��p is the stupid truncation.

2.2 Algebraic de Rham Cohomology
Let f WA!B be a finite type map of noetherian Q-algebras, and fix a presentation F !B with F a finite
type polynomial A-algebra. Define the algebraic de Rham complex �H

B=A
2D.ModA/ as

�H
B=A´��F=A˝F

yF ;

where yF is the completion of F along F ! A, i.e. using ker.F ! A/ D I . Note that this construction
is independent of the choice of F . Further, we have two filtrations on �H

B=A
: The filtration defined by the

Hodge filtration on ��
F=A

is called the formal Hodge filtration (it depends on F ); the one obtained by
tensoring the I -adic filtration on yF with the Hodge filtration on ��

F=A
is called the infinitesimal Hodge

filtration (it is independent of F ). Denote the latter filtration by Fil�inf. It is explicitly defined by

�H
B=A=Fil

p
inf´

�
F=Ip

! F=Ip�1
˝F �

1
F=A! F=Ip�2

˝F �
2
F=A! �� �

�
where we set I k D F for k � 0.

Example 2.1. Let AD CŒx;y�=.y2�x3/, take F D CŒx;y�, so that

�H
A=C '

�
yF ! yFdx˚ yFdy! yFdx^dy

�
;

where yF is the completion of F along .y2�x3/. Then Spec.A/an is contractible, soR�.Spec.A/an;C/'C.
Now, notice that

�H
A=C ' C:

Remark 2.1. The general theorem of Hartshorne is that for a finite-type C-algebra A, �H
A=C

computes the
Betti cohomology of Spec.A/an.
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2.3 Derived de Rham Cohomology
2.3.1 The Derived De Rham Complex

Let A! B be a map of rings. Resolve B by a polynomial A-algebra (say the standard resolution). Note
that ��

P=A
is a simplicial, dg A-algebra, where the i th column is the de Rham complex ��

Pi =A
and the j th

row is the P -module �j

P=A
. Since �j

P=A
is a flat P -module for j D 1, it is flat for any j . Since P ! B is

a quasi-isomorphism, we thus have the adjunction arrow

�
j

P=A
!�

j

P=A
˝P B D^

jLB=A; (2.1)

which is also a quasi-isomorphism for all j . The total complex of ��
P=A

is denoted

L��B=A

and called the derived de Rham complex of B=A. We can globalize this for a morphism f W X ! S of
schemes by setting

L�X=S D L�
�

OX =f �1OS
:

This complex is equipped with the Hodge filtration:

F kL��B=A´ Tot
�
� � � ! 0!�k

P=A!�kC1
P=A
! �� �

�
:

It has associated graded

grL��B=A

'
�!^LB=AŒ���´

M
i

.^iLB=A/Œ�i �:

Indeed, the adjunction arrows (2.1) give us the desired graded quasi-isomorphisms.

Remark 2.2. We can use any free resolution P ! B instead of the standard one without changing the
above quasi-isomorphism. Indeed, since LB=A is flat, the second term is by definition L^LB=AŒ���. The
invariance of �1

P=A
and LB=A under choice of resolution gives the corresponding invariance of L��

B=A
.

2.3.2 The Completed Derived De Rham Complex

Since ��
P=A

is in the second quadrant, the Hodge-to-de-Rham spectral sequence does not in general degen-
erate. It is thus convenient to work with the “completed” version. Define the completed derived de Rham
complex as

2L��B=A´ limL��B=A=F
nL��B=A:

2.3.3 The Simplicial Derived De Rham Complex and its Completion

We can upgrade the preceding discussion to a map of simplicial rings. Let A! B be a map of simplicial
rings, and let P ! B be a polynomial A-algebra resolution of B . Define the Hodge-completed derived
de Rham complex cdRB=A of A! B as the completion of j��

P=A
j for its Hodge filtration, i.e. cdRB=A D
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limNop
0

cdRB=A =Fil
k
H , where cdRB=A =Fil

k
H 2Ch.A/ is the totalization of the simplicial cochain complex Œn� 7!

��k�n
P=A

. As above, its graded pieces are computed by

grk
H .
cdRB=A/'^

kLB=AŒ�k�;

and they’re independent of the choice of P . This also applies to any map of simplicial commutative rings
in a topos.

Example 2.2. If A! B is smooth, then LB=A '�
1
B=A

, so cdRB=A is the usual de Rham complex.

Example 2.3. LetA be aQ-algebra, and letBDA=.f /, where f 2A is regular. ThenLB=A' .f /=.f
2/Œ1�.

In particular, cdRB=A =Fil
2
H is an extension of B by LB=AŒ�1� D .f /=.f

2/: The natural map A!cdRB=A

induces an equivalence A=.f 2/ Š cdRB=A =Fil
2
H . Moreover, this map induces equivalences A=.f n/ ŠcdRB=A =Fil

n
H for each n, hence an equivalence yA ŠcdRB=A. By Künneth, this extends to an equivalence

A=𝔞n ŠcdRB=A =Fil
n
H for B D A=𝔞 with 𝔞 any regular ideal.

Proof. Consider first the Q-algebra map QŒx�
1 7!1
���! Q. The transitivity triangle degenerates in this case,

since LQ=Q D 0, so that

LQ=QŒx� ŠLQŒx�˝QŒx�QŒ1�

Š.x/=.x2/Œ1�:

Now, consider the Q-algebra map QŒx�
x 7!f
���! A. By base change,

LB=A D LQ=QŒx�˝
L
QB Š .f /=.f

2/Œ1�

by the above.
Now, since LB=A Š .f /=.f

2/Œ1�, we can use the fact that

LB=A D�
1
P=A˝P B

for P ! B the standard free resolution to compute �1
P=A

: It is given by LB=A itself. Indeed, the standard
resolution has i th term B˝AiC1 D B . Hence,

�1
P=A˝P B D�

1
P=A:

But notice that the map P ! LB=A is given by the differential P1! .f /=.f 2/ which is clearly the 0 map.
Hence, we have a complex

B
0
�! LB=A ' B˚ .f /=.f

2/D A=.f 2/:

Induction immediately gives the equivalences A=.f n/ŠcdRB=A =Fil
n
H .

If B D A=𝔞 with 𝔞 D .f1; : : : ;fn/ regular, then the calculation above generalizes to

LB=A Š 𝔞=𝔞2Œ1�:
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First, we use theQ-algebra mapQŒx1; : : : ;xn�
17!1
���!Q. Next, we can use theQ-algebra mapQŒx1; : : : ;xn�

xi 7!fi

����!

A. The Koszul complex then gives a free resolution of B , so we get that

B D A˝LQŒx1;:::;xn�Q;

which in turn gives

LB=A D LQ=QŒx1;:::;xn�˝
L
QB:

Now, our sequence becomes

B! 𝔞=𝔞2Œ1�!^2
B𝔞=𝔞

2Œ1�! �� � ! ^n
B𝔞=𝔞

2Œ1�:

Now, use the Künneth spectral sequence to prove the claim by induction. Namely, use that K
�
f1;f2

�
D

K.f1/˝K.f2/ along with Künneth, where K.�/ denotes the Koszul complex associated to the regular
sequence .�/.

3 The Main Theorem
Proposition 3.1 (Quillen). LetA be a simplicial ring, and let 𝔞�A be a simplicial ideal with �0.𝔞/D 0 and
such that 𝔞n � An is regular for each n. Then A is 𝔞-adically complete, i.e. AŠ limA=𝔞n in the category
of simplicial A-algebras.

Corollary 3.2. Let A be a simplicial Q-algebra, and let 𝔞 � A an ideal with �0.𝔞/D 0. Then A admits a
functorial, complete, separated Nop

0 -indexed filtration FilkH whose associated Nop
0 -indexed system of quo-

tients is

fA=FilkH g ' fcdR.A=𝔞/=A =Fil
k
H g:

In particular, A'cdR.A=𝔞/=A.

Proof. One can define a simplicial model structure on the simplicial category of pairs .A;𝔞/ comprising a
simplicial algebra A together with simplicial ideals 𝔞 � A as follows. A map .A;𝔞/! .B;𝔟/ is a (trivial)
fibration if and only if A! B , 𝔞! 𝔟 are so as maps of simplicial sets. The cofibrant objects are pairs
.F; 𝔣/ with each Fn a polynomial algebra on a set fxng of generators, and each 𝔣n � Fn an ideal defined
by a subset fyng � fxng of the polynomial generators such that both the xn and yn are preserved by the
degeneracies. In particular, for each cofibrant .F; 𝔣/, the ideal 𝔣 is termwise regular. Now the claim follows
from the above Proposition by cofibrant replacement.

Theorem 3.3. Let f W A! B be a surjection of simplicial Q-algebras. Then CompA.A;f / 2 Ch.A/
admits a canonical Nop

0 -indexed, separated, complete filtration Fil�H whose associated Nop
0 -indexed system

of quotients is

fCompA.A;f /=Fil
k
H g ' f

cdRB=A =Fil
k
H g:

In particular, CompA.A;f /'cdRB=A.
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Proof. We can assume that B is A-cofibrant, i.e. B is a simplicial polynomial A-algebra. Since A! B is
surjective, �0.Bm/' �0.B/; hence, by Corollary 3.2, we have

fBm=Fil
k
H g ' f

cdRB=Bm
=FilkH g:

Moreover, by functoriality, we get identifications of Nop
0 -indexed systems of cosimplicial A=B�-complexes

f.A=B�/=Fil
k
H g ' f

cdRB=.A=B�/ =Fil
k
H g:

Limits commute with limits, so we have an identification

fCompA.A;f /=Fil
k
H g ' fTot.cdRB=.A=B�/ =Fil

k
H /g:

But we also have a map by functoriality

" W fcdRB=A=B =Fil
k
H g ! fTot.cdRB=.A=B�/ =Fil

k
H /g;

so we need only check that " is an equivalence. Passing to the associated graded, we find

grk."/ W ^kLB=AŒ�k�! Tot.^kLB=.A=B�/Œ�k�/

which is an equivalence by the following two lemmas.

Lemma 3.4. Let A be a cosimplicial simplicial ring. The forgetful functor csModA! sModA0
has a left

adjoint F ; for any M 2 sModA0
, F.M/ is homotopy equivalent to 0 in csModA.

Remark 3.1. The proof is formal nonsense.

Lemma 3.5. Let A! B be a map of simplicial rings. Then

Tot.^kLB=.A=B�//'^
kLB=A:

Proof. Choose a simplicial polynomial A-algebra resolution P !B , and let 𝔞 �A=P� be the cosimplicial
simplicial ideal defining the augmentation A=P�! P . Then

^
kLB=.A=B�/ D^

k.I=I 2Œ1�/ 2 csModP :

By the Lemma, �1
.A=P�/=A

˝A=P� P and its wedge powers are homotopy equivalent to 0 in csModP . Thus,
take ^k of the cosimplicial transitivity triangle

�1
.A=P�/=A˝A=P� P !�1

P=A! I=I 2Œ1�

of simplicial P -modules.

We can now prove the main theorem.

Theorem 3.6 (Main Theorem). Let A! B be a finite type map of noetherian Q-algebras. Then there is a
filtered A-algebra cdRB=A!�H

B=A

map which is an equivalence of the underlying algebras.

10



Proof. If we fix a finite type polynomial A-algebra F with a surjection of A-algebras F !B , then�H
B=A
'

��
F=A
˝F
yF . It is a fact that

�H
B=A
' Tot

�
yF 2F ˝AF 6F ˝AF ˝AF � � �

�
;

where the completion is along the composition F˝An! F ! B . By Carlsson’s Theorem (1.10), we have

�H
B=A ' Tot.CompA..A=F�/! B/:

Now, use Theorem 3.3 applied to the maps F˝An! B to obtain

�H
B=A ' Tot

�cdRB=.A=F�/

�
:

We see that �H
B=A

thus has a complete separated Nop
0 -indexed filtration Fil�H 0 such that

f�H
B=A=Fil

k
H 0g '

�
Tot

�cdRB=.A=F�/ =Fil
k
H

��
:

Now, we can use the argument at the end of the proof of Theorem 3.3.

11
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