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1 Introduction
Geometric Langlands has a natural physical setting as a twist of four dimensional, N D 4 supersymmetric
Yang-Mills theory (SYM). An easy way to obtain this theory is by compactification (i.e. dimensional
reduction) of the essentially unique ten dimensional SYM (which is the maximal allowed dimension for
SYM). This is discussed in some detail in [7]. We then topologically twist this theory to obtain a topological
field theory (TFT), see [7] for more details. The TFT has a partition function which to each four-manifold
assigns a number, to each three-manifold assigns a Hilbert space, and to each two-manifold assigns a
category of branes, or boundary conditions. The categorical Langlands correspondence is a correspondence
between the categories assigned to two (S -dual) two-manifolds.

Recently, Etingof-Frenkel-Kazhdan have discovered an analytic version of the Langlands correspon-
dence, which instead of functors and categories one instead has Hilbert spaces and self-adjoint operators as
the duality parameters. This year, Gaiotto-Witten reinterpreted this story in a gauge-theoretic setting [5].
The purpose of this note is to describe some of the basic features of this setting, how it encompasses the
discovered analytic Langlands duality, and how physical dualities and notions imply some of the unproven
conjectures of Etingof-Frenkel-Kazhdan.

2 Review of Categorical Geometric Langlands in SYM

2.1 Review of Four-dimensional SYM
Four-dimensional N D 4 SYM is most easily obtained from dimensional reduction of N D 4 ten-
dimensional SYM. In the ten-dimensional theory, the fields are the gauge field A, i.e. a connection on
a G-bundle E, and a fermion field � that is a section of SC ˝ ad.E/, where SC is the (positive) spin
representation of SO.10/. We have the covariant derivative D D dCA where d is the de Rham differ-
ential, and the curvature of A is F D dA C A ^ A. Reduction to four dimensions is then quite simple:
Take all fields to be independent of the coordinates x4; : : : ; x9. Thus, the other 6 components of the gauge
field AiC4 define new four-dimensional scalar fields �i , i 2 f0; : : : ; 5g. Similarly, the fermion field de-
fines new four-dimensional fermionic fields  i . The ten-dimensional action then has a neat expression as a
four-dimensional one, which we will not reproduce here.

We now twist the theory thus obtained to obtain a TFT on any suitable four-manifold M . A detailed
description of the twisting procedure can be found in [7], and it’s not especially relevant for the current
paper, so we will omit it.

2.2 Categorical Geometric Langlands in the Context of SYM
In the mathematical theory of geometric Langlands, one begins with a smooth, projective curve X=C and
a complex reductive algebraic group G. Then one has a correspondence between the moduli space of flat,
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holomorphic line bundles on X with connection and Hecke eigensheaves on BunG.X/. Physically, we
study the twisted SYM onM D †�X , and compactify on X to obtain a two-dimensional sigma-model on
†. This model is of maps†!MH .X;G/, where MH .X;G/ is the Hitchin moduli space onX with gauge
groupG, whereG is now compact. The originalG of geometric Langlands is thenGC, the complexification
of this compact G. Explicitly, MH .X;G/ is a complex manifold of dimension .2g � 2/ dimG. It is the
space of solutions to Hitchin’s equations for the group G on X . It is the moduli space of G Higgs bundles
on X , where a G Higgs bundle is just a principal G-bundle E along with a Higgs field, ', which is a
holomorphic section of KX ˝ adE. The connection to geometric Langlands is that Wilson and ’t Hooft
operators in the four-dimensional theory reduce to line operators on † that can be thought of as functors
on the category of D-branes (Dirichlet boundary conditions) of the sigma-model. These functors have
“eigenbranes,” and these are the Hecke eigensheaves of the geometric Langlands correspondence. The line
operators in question are then the Hecke functors.

One can view usual geometric Langlands as a deformation quantization of the algebra of holomorphic
functions on MH .X;G/. On the other hand, the analytic theory can be obtained by geometrically quan-
tizing this real symplectic manifold. Thus, a certain class of functions (not necessarily holomorphic or
antiholomorphic) becomes a class of operators acting on a certain Hilbert space. Upon working through
this task, we find that S -duality of boundary conditions naturally encodes the oper condition. Moreover, we
find that certain conjectures of Etingof-Frenkel-Kazhdan are answered in the positive by the physics.

3 Geometric Quantization of MH .X;G/

3.1 Brane Quantization
Before discussing how to quantize the sigma-model discussed above, we will first make some general
remarks about brane quantization, which was discussed in detail in [Gukov-Witten]. Let Y be a complex
symplectic manifold with complex structure I and holomorphic symplectic form �. We can view Y as a
real symplectic manifold with the real symplectic form ! D Im �: Supposing that a � -model with target
Y exists, which is believed to be true if � can be extended to a complete hyper-Kähler structure, we can
twist this � -model to an A-model. The A-model of Y can have in addition to the usual lagrangian branes
also coisotropic branes. The simplest possible case is a rank 1 coisotropic A-brane supported on all of Y .1

Let B be the B-field of the � -model, which is just a 2-form field. It actually doesn’t matter what this map
is or does, as we will soon set it to 0. Further on Y , we can consider a brane with support all of Y whose
Chan-Paton (CP) line bundle has a unitary connection A with curvature F D dA. A CP line bundle on a
brane is one which paramatrizes the CP factors that can be assigned to its boundary; see [8] for a physical
explanation of these factors. For this to be an A-brane, Kapustin-Orlov found that I 0 D !�1.F C B/

should be an integrable complex structure on Y . Two possible cases are now obvious: We could choose
F C B D Re �, so I 0 D I . This brane will be denoted Bcc, and we will call it the canonical coistropic
A-brane. Another choice is F C B D �Re �, so I 0 D �I . We will denote this A-brane as Bcc, the
conjugate canonical coisotropic A-brane. Now, for convenience, take B D 0, so that F 2 fRe �;�Re �g.
This choice is possible since for MH .X;G/, Re � has trivial cohomology, so there exists a complex line
bundle on Y with curvature Re �.

The algebras of functions which we could deformation quantize are then A D Hom.Bcc;Bcc/ and

1An A-brane is just a Dirichlet boundary condition for the A-model with target Y .
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A D Hom.Bcc;Bcc/, where the power series in ℏ is given by � D �0=ℏ (we keep �0 fixed). As ℏ ! 0,
A ! A0, the commutative algebra of holomorphic functions on Y . At first order, the noncommutative
multiplication in A is given by the Poisson bracket ff; gg D .��1/ij@if @jg.

However, we would like to geometrically quantize, so we want to consider a real symplectic manifold
M with symplectic form !, whose complexification will be Y . In practice, we will set M to be the Hitchin
moduli space viewed as a real symplectic manifold and Y D M �M , so in particular �jM D !, where
� is the complex symplectic form on Y . Thus, there is an antiholomorphic involution � on Y such that
��� D �; it’s given by reversing the factors of M . Now, a choice of a prequantum line bundle L ! M

determines an A-brane B with support all of M . After we geometrically quantize, the A-model Hilbert
space obtained with these inputs is H D Hom.B;Bcc/. We will now define a hermitian inner product on
H.

3.2 Defining the Inner Product
In order to define the inner product, we need to understand the TFT structure of the twisted � -model on
Y . Since Y D M �M is a product, there are different ways we can interpret branes on Y . In particular,
given a brane B, we can consider the space Hom.B;�Bcc/, where �Bcc is the product canonical coisotropic
brane on Y , i.e. �Bcc D Bcc � Bcc, where each Bcc sits on its copy of M . Explicitly, what we’re doing is
considering two copies of the � -model, one on each copy ofM . For � to be an antiholomorphic involution,
we need the complex structure on oneM to be I and on the other to be �I . The brane B is then considered
as living on the boundary of the two copies of M , see Fig. 1. Thus, the Hilbert space we’re interestedin
is H D Hom.B; OBcc/. The TFT structure gives us a nondgenerate bilinear pairing between the dual space
H� D Hom. OBcc;B/, but it isn’t necessarily hermitian. To make it hermitian, we need to compose it with an
antilinear map H! H�. Physics immediately gives us such a mapping: The CPT symmetry ‚. However,
‚ is not an A-model symmetry; rather, it maps the A-model to a copy of itself with opposite symplectic
form. Equivalently, it maps theA-model with BRST differentialQ to a conjugateA-model with differential
Q�. However, the symmetry � of the � -model discussed above reverses the sign of the symplectic form;
equivalently, it mapsQ back toQ� (and vice-versa). Thus, using the composition‚B� which is self-adjoint
antilinear, we get an antilinear symmetry of the A-model. Define then the hermitian inner product to be

h ; 0i D .‚ B � ; 0/;

where .�; �/ is the pairing described above between H and H�. Now, this pairing is not positive definite in
general; however, if we specialize to the case of quantizing the cotangent bundle of the Hitchin moduli space
(which we will soon do), which is a dense open contained in M �M , then the pairing is positive definite
and is the required inner product. We remark that the proof that the inner product is positive definite (in the
physics context) is actually quite subtle, and we do not have the space to include it here. See Appendix B
of [5].

3.3 Quantization of MH .X;G/

In §3.2, we were only considering the reduced theory. Now that we have set out to quantize, we actually
want to consider the full four-dimensional theory on † � X , where we think of † as the “unfolded” strip
of Fig. 1. We will now digress to explain what this means.
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Figure 1: The “folded” � -model on Y . There are two copies of the Hitchin moduli space M with a
boundary condition B separating them. They each have their own canonical coisotropic branes Bcc and Bcc,
respectively. The reason for the conjugate brane is because the two M ’s have opposite complex structures.

As was mentioned in §3.2, there are alternative ways to view the � -model on Y . An alternative descrip-
tion to the one presented in the previous section is to begin with the situation depicted in Fig. 1, and to
“unfold” the picture. This means we reverse the orientation of one of the two sheets and set B to be the
trivial boundary condition (i.e. the unit object in the (symmetric monoidal) category of branes). We thus
end up with a single � -model on a strip: Before unfolding, the symplectic forms on the two copies of M
differed by a sign; reversing the orientation sets them equal. Clearly, in the unfolded picture, H becomes
Hom.Bcc;Bcc/, and we could define an inner product for it following exactly the same approach as that
described in §3.2.

Returning to quantization, a Higgs bundle on X can as usual be described by a pair .A; '/, where A is a
connection on the underlying G-bundle E ! X and ' is a section of KX ˝ ad.E/. Using this description,
we can obtain Bcc from Bcc via the mapping .A; '/ 7! .A;�'/. Now, note that a dense open set in
the Hitchin moduli space MH .X;G/ is the cotangent bundle T �M.X;G/, where M denotes the moduli
space of semistable holomorphic G-bundles on X . This situation is ideal for geometric quantization, since
quantization of cotangent bundles is particualrly simple. Namely, the Hilbert space that is associated to
M.X;G/ is just L2hd.M.X;G//, where L2hd denotes the space of L2 half-densities, i.e. the space of L2

sections of K1=2 ˝ K
1=2

, where K is the canonical bundle of M.X;G/. Note that since this cotangent
bundle is dense in the Hitchin moduli space, we might expect their associated quantum Hilbert spaces to be
the same. In fact they are, via a construction in [Brane Quant].

3.4 Operators on the Quantum Hilbert Space
3.4.1 Hitchin Hamiltonians

Now that we have a Hilbert space, we need to identify the classical functions that quantize to operators
acting on that space. In analytic Langlands, these are the Hecke operators. Given a Higgs bundle .A; '/,
which we remind is a solution of Hitchin’s equations, we can consider only the holomorphic (1,0) part of
', denoted  . Hitchin’s equations give N@A' D 0, where N@A is the anitholomorphic Dolbeault differential
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twisted by the connection A. Given an invariant polynomial on the Lie algebra gC of the complexification
GC ofG, homogeneous of degree s, then P. / 2 �.X;Ks

X/ is holomorphic. Setting TX D K�1X , and given
any ˛ 2 �.X;�0;1X ˝T

s�1
X /, i.e. any 1-form on X with values in T s�1X , we define the Hitchin hamiltonian

associated to P and ˛,

HP;˛ D

Z
X

˛P. /: (1)

This is a holomorphic function on MH .X;G/; clearly, it depends only on the cohomology class of ˛ in
H 1.X; T s�1X /. There are only finitely many ˛, given by the dimension of this space, which is .sC1/.g�1/.
For example, if G D SU.2/, the ring of holomorphic functions on the Hitchin moduli space is generated
by HP;˛, where P. / D tr. 2/ (for this is the only invariant polynomial on gC D su2 Š sl2.C/).
Indeed, given simpleG of rank r , we get r independent Casimirs, which in turn give rise to r homogeneous
invariant polynomials Pi , and the ring of holomorphic functions on the Hitchin moduli space is generated
by the HPi ; j̨

. Note that these hamiltonians Poisson-commute, since they are constructed from  only.
These are the hamiltonians of the classical Hitchin integrable system, and we expect that they will give rise
to operators acting on H after quantization.

For example, deformation quantization of the algebra A0 of holomorphic functions on MH .X;G/ to
the (generally non-commutative) algebra A of operators on H arises by an expansion in ℏ, mentioned
in §3.1. This deformation is unobstructed: For every invariant polynomial P on gC homogeneous of
degree s, and for each Hitchin hamiltonian HP;˛ associated to it, there exists a differential operator DP;˛
whose leading symbol isHP;˛ acting on �.M.X;G/;K1=2/, whereK is the canonical bundle of M.X;G/.
Mathematically, this follows from the fact that for any simple G, H 1.M.X;G/;O/ D 0. Physically, this
follows from the fact that the BRST cohomology of boundary local operators for Bcc is generated by the
operators P and a second type of generator which also commutes with P . The quantum BRST cohomology
is then the cohomology of the quantum BRST differential Q which acts on the classical cohomology;
however, it turns out that this differential is identically 0. This implies that the quantum cohomology is
equal to the classical one; hence, the commuting Hitchin hamiltonians quantize to commuting holomorphic
differential operators. In particular, there is no obstruction to the deformation quantization of A0. In the
next subsection we will explain this gauge theory picture.

3.4.2 Quantization of the Hitchin Hamiltonians

[K-W] To see what the boundary local operators for Bcc are, it is essential to pass to the four-dimensional
picture. Consider local operators O inserted at a point p of the boundary of†�X , which we note looks like
R � X . Consider the cohomology of the topological supercharge Q of the A-model in complex structure
K which acts on local operators inserted at .s; p/ 2 R � X . Further, note that the metric of X is irrelevant
modulo fQ; � � � g (i.e. modulo Q-exact terms), so we may as well assume X flat near p.

Now, O are classified by their dimension and “spin,” i.e. by (half of) the highest weight of the repre-
sentation under which they transform by rotations of X about p. Thus, consider Q-invariant operators of
dimension n and spin also n. A gauge invariant operator must be constructed only from �z,  z , and z z, and
the covariant derivativeDz . These fields are linear combinations of the fields of the four-dimensional theory
described in §2.1. The subscript z denotes that we take the holomorphic part of the field, viewed in the com-
plex structure J on the Hitchin moduli space. In other words, we define a local complex parameter z on X
and take those parts of the fields that are holomorphic in z; for example, Az appears in A D Az dzCA Nz d Nz.
However, since Az is not Q-invariant on the boundary, Dz cannot appear. On the boundary,  z D z z,
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so boundary observables that are Q-invariant of dimension n and spin n are functions just of �z and  z,
without any derivatives. Now, �z and  z have fermion ghost numbers K D 0 and K D 1, respectively.2

Thus, an operator with K D 0 is a gauge-invariant function of �z only, e.g. tr�nz , while a typical operator
of K D 1 is e.g. O0 D tr.�n�1z  z/. Classically, the boundary conditions ensure that ŒQ; �z� D 0 and
fQ; zg D 0, so all boundary local operators O, O0 are nonzero elements of the cohomology of Q. What
are the quantum corrections to this result? For example, could there be a correction such that ŒQ;O� D "O0

for some " ¤ 0? This would imply that a linear combination of O and O0 now lives in the cohomology,
while O and O0 disappear from it.

Time-reversal symmetry T shows that such a quantum correction is impossible. This is an orientation-
reversing symmetry on the spacetime manifold which changes the sign of the time coordinate x0 7! �x0
and leaves the other coordinates unchanged. Now, various formulas in [7], namely Equations 3.56-3.58,
imply that T is a symmetry of Bcc, it commutes with the topological supercharge of theA-model in complex
structure K, �z is odd under T, and  z is even under T. Thus, the operators O and O0 cannot “pair up”
under the action ofQ in its cohomology, so they remain in the full quantum cohomology. Given an arbitrary
boundary local operator of dimension and spin n and ghost number k that is Q-invariant classically, it is
determined by a gauge-invariant function f .�z;  z/ of degree n� k in � and k in  z; hence, its eigenvalue
is .�1/n�k under action by T. But for Q to act on it non-trivially, n would have to remain the same while
k would increase by 1; this would switch the sign of the eigenvalue of T, which is impossible. Hence, even
these more general operators are preserved under quantization.

Now, by Theorem B in [4] and the discussion in the latter half of Appendix A [5], the classical BRST
cohomology is generated by invariant polynomial operators either of the form P.�z/ or of the form P 0.�zC

" z/ D P.�z/C"P
0.�z;  z/, where " is an odd (i.e. Grassmann) parameter, and their z-derivatives. Armed

with this result, we’d like to prove that there are no quantum corrections. In fact, the above argument does
not cover all possible cases. The Chevalley involution C of a Lie algebra g (which descends to the associated
group G) is called charge conjugation by physicists. In the case that it is an inner automorphism of G, then
the above analysis of quantum corrections is correct. However, in the event that C is outer, then it is in fact
possible to find nontrivial operators such that ŒQ; P � D O or fQ;P 0g D O that are consistent with the T

symmetry. The key is that the cohomology is also generated by z-derivatives of the polynomials in addition
to the polynomials themselves.

Now, we can determine whether a given an invariant polynomial P on g is even or odd under C by
restricting it to the Lie subalgebra of g associated to a maximal torus of G (since this restriction will be
nontrivial for nontrivial P ). In this case, we have

Lemma 1. For simpleG, CP.�z/C�1 D P.��z/, and CP 0.�z;  z/C
�1 D P 0.��z;� z/ D �P

0.��z;  z/.

Proof. To say P is an invariant polynomial is to say that it is invariant by the adjoint action of the group G
on g. By definition, C acts as �1 on every root vector, so we’re done, since, again by definition, � and  
are valued in the adjoint representation of G.

Applying this lemma to the result of the analysis of the T symmetry, we find that CTP.�z/.CT/�1 D
P.�z/ and CTP 0.�z;  z/.CT/

�1 D �P 0.�z;  z/. Thus, the composite operator CT acts as .�1/k on the
part of the classical cohomology that is degree k in the operators P 0 and their derivatives. Since the BRST
differential commutes with CT, this operator must act trivially on the classical cohomology, since the left
and right hand sides of a formula ŒQ; P � D O or ŒQ; P 0� D O would transform oppositely under CT.

2Ghost numbers in the A-model are just the degree or dimension of the cohomology class of the field. They actually arise
from a symmetry of the topological twist of four-dimensional SYM. For more on this, see §3.1 of [7].
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Now, we claim the following.

Proposition 1. The algebra A is commutative.

Physics Proof. The definition of HP;˛ given in Eq. 1 depends only on the cohomology class of ˛ in
H 1.X; T s�1X /. We can thus choose a representative of such a class with support in an arbitrarily small
open ball in X . Thus, given a; a0 2 A, we can assume that they are represented by operators with disjoint
support in X ; hence, when represented as living on the boundary of † pictured in Fig. 2, they can “slide”
past each other in the TFT. This is equivalent to them commuting.

Figure 2: In general, in two-dimensional TFT, A can be non-commutative, since a; a0 2 A can be inserted
on the boundary in a particular order. The ability to slide them past each other in the TFT without singu-
larity is equivalent to commutativity of a; a0. However, for the TFT studied here, there are two additional
dimensions not pictured which correspond to the dimensions of X (only † and its boundary is pictured).
Assuming that a and a0 have disjoint support in X , they can be moved past each other without singularity.

We recall that brane quantization of MH .X;G/ is equivalent to quantizing T �M.X;G/. In geometric
quantization of any cotangent bundle, a function whose restriction to a fiber of the bundle is a homogeneous
polynomial of degree s becomes a differential operator, also of degree s, which acts on half-densities on the
base of the bundle. From the holomorphic point of view, holomorphic functions on T �M.X;G/ become
holomorphic differential operators acting on sections of K1=2. Since any holomorphic differential operator
has trivial action on sections of K

1=2
, such an operator naturally acts on K1=2 ˝ K

1=2
. Of course, the

same story holds for antiholomorphic functions. Therefore, A and A become algebras of holomorphic and
antiholomorphic differential operators acting on K1=2 ˝K

1=2
, respectively; clearly, they commute.

3.4.3 Hecke, ’t Hooft, and Wilson Operators

In categorical geometric Langlands, we have Hecke functors which act on the category of A-branes and the
“eigenbranes,” or Hecke eigensheaves, of these Hecke functors. This picture was put in a gauge-theoretic
framework in [7], where the Hecke functors are ’t Hooft line operators. Electric-magnetic duality (S -
duality) maps ’t Hooft line operators into Wilson line operators, and this gives the usual statements about
categorical geometric Langlands. The goal of the present section is to show how these operators can be
thought of not just as functors, but as honest operators acting on the Hilbert space H.
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The usual picture of line operators in a general two-dimensional TFT is given in Fig. 3. Interpreting
line operators as functors, we run an operator T parallel to one of the boundary conditions, say B of
the TFT, as in Fig. 3a. Moving it to the left boundary it defines a new boundary condition TB. On
the other hand, moving it to the right boundary it defines a new boundary condition T �B0, where T � is
the adjoint of T (this appears due to the reversed orientation fo the line operator relative to the boundary
condition). Thus, we obtain a functor Hom.TB;B0/ ! Hom.B; T �B0/ induced by T . This is the story
that gives the categorical geometric Langlands correspondence. In Fig. 3b, we instead have a horizontal
line operator. In (c) and (d) of the same figure, we specify additional data ˛ 2 Hom.B; TB/ at the left
endpoint of the operator and ˇ 2 Hom.TB0;B0/ at the right one. The operator on the quantum Hilbert
space H D Hom.B0;B/ associated to T is OT , which is defined as follows. Given  2 H, we have
˛ ˇ 2 Hom.TB0; TB/ D Hom.B0; T �TB/, where T � is the adjoint of T . Since line operators form an
algebra, we get a map w W Hom.B0; T �TB/! H. Define OT . / D w˛ ˇ.

Figure 3: a) A line operator T is parallel to the left boundary of the strip and is oriented compatibly.
Moving it to the left boundary, it maps B to a composite boundary condition TB. This is a line operator
when viewed as a functor on the category of branes, as in categorical geometric Langlands. b) In the
analytic theory, we take the same line operator T but run it horizontally along the strip†. Along with some
additional data at its endpoints, it can be interpreted as an operator acting on the physical Hilbert space. c),
d) The additional data necessary for (b) is an element ˛ 2 Hom.B; TB/ at the left endpoint and an element
ˇ 2 Hom.TB0;B0/ at the right endpoint.

In the analytic Langlands story, we have two extra dimensions beyond the two pictured here. In general,
’t Hooft operators or their dual Wilson operators can have support an arbitrary curve  in † �X ; however,
Gaiotto-Witten restrict to those operators with  D ` � p, where p 2 X and ` is a curve in †. Of course,
this is the standard story familiar from geometric Langlands, where the Hecke functors are parametrized
by p 2 X . In addition, we suppose that ’t Hooft operators are labeled by a finite-dimensional irreducible
representation R of LG (or, equivalently, of LGC). We can denote such an operator as TR;p; its dual Wilson
operator can be denoted WR;p. Thus, putting the last two paragraphs together, we have that OTR;p are the
’t Hooft operators which act on H associated to a line operator TR;p with the ˛; ˇ data supplied at its
endpoints.

In [2],[3], Hecke operators have the property that they commute with each other and the quantized
Hitchin hamiltonians. This follows in the gauge theoretic description for the same reason as the commuta-
tivity of the Hitchin hamiltonians themselves.
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Proposition 2. ’t Hooft operators commute with each other and with the quantum Hitchin hamiltonians.

Physics Proof. A ’t Hooft operator TR;P commutes with a Hitchin hamiltonian HP;˛ because one can
assume that the support of ˛ is disjoint from p, so that we can slide TR;p and HP;˛ past each other without
singularity (recall that an element of A can be viewed as a point operator sitting on a boundary condition,
so it can be viewed as a point operator sitting on B in Fig. 3b). Similarly, given two ’t Hooft operators for
distinct p; p0 2 X , clearly TR;p and TR0;p0 commute. Finally, we can take the limit p0 ! p to find that
TR;p and TR0;p commute as well, without requiring R D R0.

Dual to ’t Hooft operators are Wilson operators. Given a ’t Hooft operator TR;p we have the dual
operator WR;p which is labeled by the same representation R of LGC and supported at the same point
p 2 X . Classically, Wilson operators have a simple definition. Given a gauge theory on a four-manifold
M and a principal LGC bundle LEC ! M with connection A, we can associate the vector bundle LER D
LEC �LGC R. Denoting the induced connection also by A, the Wilson operator is just the holonomy of A
on LER integrated along some oriented path  in M . If  is a loop, then we take the trace of the holonomy
about  , and this gives the usual physical Wilson operator. However, since TR;p is a line, not a loop, the
Wilson operator is also not the trace of the holonomy on a loop described above. Instead, this operator can
be viewed as a mapping between the fibers over the endpoints of the ’t Hooft operator. For definiteness,
denote these fibers as FR;p1

and FR;p2
, where pi are the two endpoints of the Wilson operator TR;p (i.e.

pi D ai � p, where ai 2 †). We can then write

WR;p W FR;p1
! FR;p2

:

If we introduce the dual representation to R, R�, then we can instead view WR;p as a linear function on a
representation:

WR;p W FR;p1
˝ FR�;p2

! C: (2)

However, what we want is a complex valued function on Higgs bundles (more specifically on connections
on these bundles), not one on vector spaces. If we could find two vectors, one in each of the fibers on
which WR;p acts, then WR;p.v ˝ w/ will be the complex-valued function that we could quantize to obtain
an operator on H. However, in order to find natural candidates for v and w, we need to describe how the
oper condition arises in the gauge-theoretic story, which we will now do. After the following section which
will allow us to define the Wilson operators as operators acting on the physical Hilbert space, we can begin
to analyze the eigenvalues of the operators heretofore described, finishing the analytic Langlands story as it
appears in the physical context.

4 S -duality Enforces the Oper Condition

4.1 The Duals of the Coisotropic Branes
Recall the A-branes Bcc and Bcc on MH .X;G/. Under mirror symmetry, these branes should have duals
in the B-model of MH .X;

LG/. This space parametrizes flat LG-bundles over X with connection A D

AC i', where .A; '/ are the unitary connection and Higgs field of the A-model bundle in MH .X;G/. In
general, B-branes are elements of DbCoh.MH .X;

LG//, complexes of coherent sheaves on MH .X;
LG/.

Note that when we say B-model without further qualification, we mean the B-model in complex structure
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J of the Hitchin moduli space. Now, the Hitchin moduli space is hyper-Kähler, so it comes equipped with
complex structures I; J;K obeying the usual quaternion relations. Moreover, it also comes equipped with
Kähler forms !I ; !J ; !K and complex symplectic forms�I D !J C i!K ,. . . . Recall that in order to define
the A-model or the B-model, one needs a symplectic form !. Thus, we can define three sorts of A- or B-
models on MH .X;G/ (equivalently MH .X;

LG/), each one corresponding to one of the three symplectic
forms. A general brane can thus have the structure of an A-brane or a B-brane in each of the three forms;
for example, we could have a brane of type .B;B;B/, which happens to be the brane supported on a point.
The dual of such a brane is a brane of type .B;A;A/. In particular, the dual of rank 1 brane supported
at a point of the Higgs bundle moduli space is a brane supported on a fiber of the Hitchin fibration with
a rank 1 flat CP bundle. These branes are exactly the Hecke eigensheaves of the geometric Langlands
program. Now, Bcc and Bcc are branes of type .A;B;A/. This follows from the Kapustin-Orlov conditions
for complex structures I and K; they are B-branes in complex structure J because the curvatures ˙1

2
!J

of their CP bundles are of type .1; 1/ in complex structure J , so these bundles are holomorphic in J . In
general, the dual of an .A;B;A/-brane is also an .A;B;A/-brane. A gauge-theoretic explanation involves
a duality between two string-theoretic systems.

Taking this for granted, we find that the complex lagrangian submanifold supporting the dual of Bcc

parametrizes flat, holomorphic LGC opers; Gaiotto-Witten denote it Lop. Similarly, the dual of Bcc is
supported on Lop, which is a complex lagrangian submanifold that parametrizes flat, antiholomorphic LGC
opers. In fact, we will see that the oper condition naturally arises from S -duality acting on deformed
Neumann boundary conditions (to be defined in §4.4) in the four-dimensional gauge theory we are studying.
Thus, there is a natural physical explanation for the oper condition that arises from the gauge theory itself.
We note that although we defined opers in class for e.g. SL2.C/ or SLn.C/ via an extension of square
roots of the canonical bundle ofX , there is another, equivalent definition via local conditions on the bundle,
which we will now describe. It is these local constraints that are enforced by the S -dual of the deformed
Neumann boundary condition, called a deformed Nahm pole.

4.2 Local Definition of Opers
Consider first the case of LGC D SL2.C/. The extension condition

0! K
1=2
X !

LE ! K
�1=2
X ! 0 (3)

which defines the LGC-oper LE implies the existence of s 2 �.X; LE ˝K�1=2X /. Denoting as D the .1; 0/
part of the connection, we have an SL2.C/-invariant combination s ^ Ds which is a global holomorphic
function on X . Note that it is nonzero; otherwise, we would haveDs D as, and a would define a holomor-
phic flat connection on K�1=2X , which doesn’t exist (if we assume g > 1 or introduce a parabolic structure
for the case g � 1). Derivating, we ahve s ^D2s D 0, so s satisfies a second order differential equation

D2s C ts D 0;

where t is some “stress tensor” on X . We can define a set of generators of the algebra of holomorphic
functions on the manifold of opers via

ft;˛ D

Z
X

˛t

10



where ˛ is a (0,1)-form with values in TX (i.e. a section of �.0;1/X ˝ TX ).
Similarly, taking LGC D SLn.C/, we have a global section s 2 �.X; LE˝K.1�n/=2

X /, so that s ^Ds ^
� � � ^ Dn�1s is a global holomorphic function on C which does not vanish. We can normalize s (up to a
multiple of an nth root of unity) so that this function is identically 1, we again have a degree n differential
equation

Dns C t2D
n�2s C � � � C tns D 0:

Thus, we can define a set of generators of the algebra of holomorphic functions on the oper manifold by

ftk ;˛ D

Z
X

˛tk;

where ˛ is now a .0; 1/-form with values in T k�1X , k 2 f2; : : : ; ng.
For general LGC, suppose given an oper bundle LE. We can then consider the associated bundles LER

for any irreducible representation R of LGC. We now bootstrap the theory for SL2.C/ to this more general
case, as follows. By the definition of an oper, the structure group of LER as a holomorphic vector bundle
reduces to a rank 1 subgroup HC �

LGC, and this subgroup is a copy of either SL2.C/ or SO.3;C/,
depending on LGC and R. Let Rn be the n-dimensional irreducible representation of HC. Thus, R ŠL1

nD0Qn ˝ Rn, where the Qn are vector spaces, almost all of which vanish. Suppose N 2 N is the
largest integer for which Qn is nonzero. Then, QN Š C is 1-dimensional, and we can thus write R Š
RN˚

LN�1
nD0 Qn˝Rn. A highest weight vector ofRN is then a highest weight vector of LGC. Furthermore,

the bundle LER also has a decomposition as a holomorphic vector bundle

LER D
LERN

˚

N�1M
nD0

Qn ˝
LERn

:

We didn’t discuss opers for general G in class, so let’s make a quick digression on this. We recall that
given any simple complex Lie group G, there is a principal embedding of Lie algebras � W su2 ! g. This
embedding descends to one of Lie groups; however, the corresponding principal subgroup can be either
SL2.C/ or SO.3;C/, as mentioned above. A G-oper is then defined to be a flat, holomorphic G-bundle E
that is equivalent to a principal embedding of an SL2.C/ oper bundle. For example, if G D SLn.C/, this
means that the oper bundle is the .n� 1/st symmetric tensor power of an extension of the form of Equation
3. It therefore has a subbundle isomorphic to K.n�1/=2

X , as we saw above:

0! K
.n�1/=2
X ! E ! � � � : (4)

An antiholomorphic G-oper is defined similarly.
For each n 2 N, we get from Equation 4 an image sRn

of the vector spaceQn into the space �.X; LER˝
K
.1�n/=2
X /, or, equivalently, a holomorphic function

sRn
W Qn ˝K

.n�1/=2
X !

LER:

The “highest weight” object sRN
, which we will henceforth denote just as sR, is of critical importance. It is

possible to define a system of differential equations for in a similar manner as in the cases of SL2.C/ and
SLn.C/ for the section sR, but this is not necessary for the present paper.
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4.3 Nahm Poles Impose the Local Constraints
A Nahm pole is by definition a certain solution of the Nahm equations, which we will now describe.
Consider gauge theory on an oriented riemannian four-manifold M which in addition to the gauge field A
has an adjoint-valued one-form �. Specializing toM D R3�RC, where RC is the half-line y � 0. Denote
by E� the part of � normal to the boundary at y D 0. Nahm’s equations are then

E�

dy
C E� � E� D 0:

These equations have a singular solution, which is called the Nahm pole. Pick a principal embedding
� W su2 ! g, given by a triple of elements Et 2 g that satisfy Œti ; tj � D "ijktk . The solution is then

E� D
Et

y
:

Now, suppose we are in the setting of the present paper, and consider again the moduli space MH .X;G/.
Further, suppose that the underlying spacetime manifold is M D † � X as before, but now we set † D
R � RC, where RC has the coordinate y as above and X has complex coordinate z. Skipping over some
details which are covered in [6], suppose we (somehow) reduce the theory on R to a three-dimensional
theory. Let the complex flat connection on a G-bundle on M be given by A , which explicitly has the form

Az D
tC

y

A Nz D0

Ay D
t3

y
;

where tC D t1 C i t2 and Et describes the the principal su2 embedding into g. Suppose now that g D su2.
Since the connection is flat, it can be described by a formula dCA D g d g�1, where g 2 G. Explicitly,
we can take

g D

"
y�1=2 �zy�1=2

0 y1=2

#
;

which gives

Az D

"
0 1

0 0

#
1

y
(5)

A Nz D0 (6)

Ay D

"
1 0

0 �1

#
1

2y
: (7)

Now, what is the condition that must be placed on a complex flat bundle E so that it can be placed in the
form given for A above, near y D 0? Restrict E to X Š X � y for fixed y > 0 (also denoted E),
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and consider solutions s of the equation Dys D 0 that vanish like y1=2 as s ! 0, where Dy is just the
covariant derivative in the y-direction. These solutions span a rank one subbundle L � E, and any such s
is a multiple of

y1=2

"
0

1

#
:

If we regard E as a flat bundle over X , then L is a holomorphic subbundle, since the object just defined
is a holomorphic section of L: It is annihilated by the covariant derivative along Nz (and its associated
modification similar to the one given for D=Dz in the next sentence; see [6] §3.1 for details). However, it
is not annihilated by D D D=Dz � Œ'; ��=2�; rather, we have

s ^Ds D 1;

which is exactly the differential equation associated to the local constraints for an SL2.C/-oper. The mean-
ing of the expression for D requires explanation. After introducing a complex coordinate z on X , we can
write �2 dx2 C �3 dx3 D ' dz C N' d Nz, where we suppose the real coordinates on X are x2 and x3. �
is a parameter which parametrizes the CP1 of complex structures on MH .X;G/. There is a similar story
for G D SUn or G D SLn.C/, that will require more detail from [6] than we would like to include. The
conclusion is that the oper conditions discussion in the previous section are likewise recovered by Nahm
pole boundary conditions.

Now, suppose we are given an SL2.C/-oper on X satisfying the local conditions of §4.2. We will now
show that we can construct a solution of the Nahm pole boundary conditions. As before, given this oper
E, we have a holomorphic subbundle L � E. We can pass to a gauge in which A Nz is spanned by vectors
whose upper component vanishes, as above, so that A Nz is lower triangular. The condition s ^ Ds ¤ 0

implies that the upper right matrix element of Az is nonzero, and we can gauge transform again to set it
equal to 1. Pull back E from X to X �RC, so we have a flat connection on RC that does not depend on y.
Finally, make the gauge transformation

g D

"
y�1=2 0

0 y1=2

#
:

After this, Az has the singular behavior of the solution given in Equation 5, while A Nz is nonsingular since
it’s lower triangular. This gauge transformation gives Ay precisely as in the solution of Equation 5. Thus,
SL2.C/-opers correspond to the solutions of the Nahm pole boundary conditions in three dimensions mod-
ulo less singular terms.

4.4 Deformed Neumann Boundary Conditions
Returning to the four-dimensional twisted SYM we’ve been studying, we assert that Bcc can be derived
from a deformed Neumann boundary condition. We recall that ordinary Neumann boundary conditions
for a gauge field A with curvature F require niFij D 0, where n is the normal vector to the boundary.
Deformed Neumann boundary conditions express niFij in terms of boundary values of other fields.

At generic ‰, the boundary theory associated to such a boundary condition is a Chern-Simons theory
with a complex connection A with curvature F D dA CA ^A and action

I D
‰

4�

Z
N

�
tr.A ^ dAC

2

3
A 3/

�
;
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where N is the boundary or a portion of the boundary of the spacetime manifold M . We remark that
along @N , we can consider a junction between the deformed Neumann boundary condition leads to I and
some other boundary condition. For suitable choices of this second boundary condition, a CFT current
algebra will appear along @N with level ‰ � h_, where h_ is the dual Coxeter number of G. Furthermore,
the �h_ is a 1-loop correction to the theory, exactly as it appears in the renormalization of the level k in
two-dimensional CFT.

Now, there is a procedure to take ‰ ! 0 which gives a holomorphic-topological boundary condition,
in the sense that the boundary condition will vary holomorphically along X and topologically along a one-
manifold S , with N D S � C . The procedure is to take the limit ‰ ! 0 keeping fixed ' D ‰

4�
Az dz.3

Under this procedure, the action I transforms to

I'F D

Z
N

tr.'zFt Nz/ dt ^ dz ^ d Nz;

where ' is the momentum conjugate to A Nz, i.e. it is given by

' D
@L

@.@tA Nz/
;

where L is the lagrangian of I . The calculation of this result isn’t very illuminating, so we will omit it.
This new action describes a topological gauged quantum mechanics on the cotangent bundle to the space
of .0; 1/-connections on X . In two-dimensional terms, the A-model of MH .X;G/ with a Bcc boundary
condition is related to analytically continued quantum mechanics on MH .X;G/. This is a heuristic analysis.
The (physics) proof that Bcc boundary conditions are encoded by deformed Neumann ones occupies about
half of §7 of [5]; we will not include this here. Moreover, the gauge-invariant local operators on N are
gauge-invariant polynomials P.'/.z/ which descend to the Hitchin hamiltonians in the two-dimensional
A-model. This phenomenon should further suggest the link to Bcc.

It turns out that S -duality maps deformed Neumann boundary conditions to Nahm pole boundary con-
ditions; however, the details of this are quite complicated and occupy much of §7 of [5]. Unfortunately, it
would take too much space to include this here. Nonetheless, we remark that this is exactly the situation we
want for analytic Langlands: On the one hand, we start with deformed Neumann boundary conditions which
are equivalent to the Bcc and Bcc conditions along with ’t Hooft or Hecke operators and their eigenvalues
which act on the physical Hilbert space defined by Bcc and Bcc. Dually, we have the Nahm pole boundary
conditions which give rise to LG-opers associated to the given Hilbert space along with Wilson operators
and their associated eigenvalues. The Wilson operators don’t seem to have a natural place in the mathe-
matical story at this time, and it is interesting to ponder what is their and their eigenvalues’ mathematical
significance for analytic Langlands.

5 Eigenvalues of the Operators

5.1 Eigenvalues of the Hitchin Hamiltonians
We saw in §4.1 that the B-model dual of Bcc was Bop, whose support was the lagrangian submanifold Lop.
Similarly, the dual of Bcc is supported on Lop, which parametrizes antiholomorphic LG-opers. Etingof-
Frenkel-Kazhdan conjecture in [2],[3] that these two lagrangians have isolated and transverse intersections

3Note that we can’t just set ‰ D 0, since a (contour) path integral with zero action doesn’t make sense. Moreover, there is no
way to take the limit ‰ ! 0 while preserving the topological invariance on N .
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(this is known to be true for SL2.C/). This actually follows from S -duality; however, this follows from a
detailed analysis of B-model quantum mechanics which we have chosen not to include. The conclusion is
that a necessary condition for the hermitian form on H to be positive definite is exactly the statement of this
conjecture.

Suppose now that the center of LG is trivial, which allows us to analyze the dual theory in a � -model
without considering Z.LG/ gauge fields. Let ‡ D Lop \Lop, so that a point in ‡ is a flat LGC-bundle that
is both a holomorphic and an antiholomorphic oper. Furthermore, assuming that the intersection points are
isolated and transverse, H D Hom.Bop;Bop/ has a basis with one basis vector  u for each u 2 ‡ .

It has been conjectured in [2],[3] that a bundle which is both a holomorphic and antiholomorphic oper
must be real. Indeed, this follows from the physics. Suppose u 2 ‡ corresponds to a copmlex flat bundle
E that is an oper both holomoprhically and antiholomoprhically. Then its complex conjugate E is also
such an oper. If E and E are not gauge-equivalent, then E corresponds to a point Nu 2 ‡ distinct from
U . Thus, they will correspond to distinct basis vectors  u and Nu of H; moreover, these will be exchanged
by the symmetry ‚� . The natural B-model pairing is diagonal in the basis of the  u, so that we can
normalize the basis vectors such that . u;  u0/ D ıuu0 for any u; u0 2 ‡ . Thus, if ‚� exchanges two
distinct basis vectors, it follows that they are both 0 vectors for the hermitian inner product defined in §3.2.
As mentioned above, the inner product is positive definite; hence, it follows that E must be equal to E up
to a gauge transformation. In particular, E must be real.

Now, we can predict the spectrum of the Hitchin hamiltonians viewed as operators on H. Let HP;˛ 2
A D Hom.Bcc;Bcc/ be such a quantized Hitchin hamiltonian. Duality identifies A with Hom.Bop;Bop/;
thus, it identifies HP;˛ with a holomoprhic function fP;˛ on Lop. Acting on a basis vector  u that cor-
responds to a point u 2 ‡ , HP;˛ just acts by multiplication by the corresponding eigenvalue fP;˛.u/.
Similarly, given H NP; N̨ 2 A D Hom.Bcc;Bcc/, we get that it corrresponds to a holomorphic function f NP; N̨
on Lop. It acts on  u as multiplication by f NP; N̨ .

In order to include the center of LG, we need to slightly refine the description of the dual of the Bcc

(resp. Bcc) brane. In particular, Bop is the dual of Bcc in the � -model of MH .X;
LG/, but the low energy

description of this model also contains a Z.LG/ gauge field. Recall the local oper condition discussed in
§4.2, where we were able to normalize an object s (guaranteed to exist by virtue of the Nahm pole boundary
condition) up to an nth root of unity for the case of LG D SLn.C/. Such a root of unity is an element of
Z.LG/, so what is happening is that the Z.LG/ gauge invariance is trivialized along the boundary via a
particular choice of normalized S . When we quantize the theory on a strip, we actually have two choices
of s, s` and sr , at the left and right boundaries of the strip, respectively. We can make a global gauge
transformation by an element x 2 Z.LG/ which acts on the pair of trivializations by .s`; sr/ 7! .xs`; xsr/.
We should then consider such pairs equivalent and mod out by this equivalence relation. This is discussed
in more detail in [5] and [6]; we just wanted to give some flavor for what was going on.

5.2 Eigenvalues of Wilson and ’t Hooft Operators
It was shown in Proposition 2 that the ’t Hooft operators commute with the Hitchin hamiltonians; hence,
they can be diagonalized in the same basis of states  u;" for u 2 ‡ (assuming again that the center of LG
is trivial for simplicity; we could generalize to the case that it isn’t without too much difficulty). Recall
Equation 2 from the end of §3.4.3. We had obtained a linear function on a vector space, while we want
a complex-valued function of connections. In order to obtain this, we just need to supply two vectors
v 2 FR;p1

and w 2 FR�;p2
, so that WR;p.v ˝ w/ will be the complex-valued function that we could then
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quantize.
Luckily, a natural candidate was supplied in §4.2, namely sR W K

.N�1/=2
X ! LER. Thus, given a vector

v 2 K
.N�1/=2
X;p , we can define sR.v/ 2 LER;p for any holomorphic oper with associated bundle LER.

Similarly, given an antiholomorphic oper with associated bundle LER0 , we have a function NsR0K
.N�1/=2

X !

LER0 . Thus, given w 2 K.N�1/=2
X;p , we get NsR0.w/ 2 LER0;p. In the case of a bundle LER over†�X that is

a holomorphic oper on the left boundary an antiholomorphic one on the right boundary, we can apply these
constructions on each of the boundaries to obtain the function

WR;p;v˝w D WR;p.sR.v/˝ NsR�.w//:

This is finally a complex-valued function on connections that can be quantized to get a quantum operator
on physical states, as promised in §3.4.3.

It is actually quite simple to diagonalize this operator (we use the same notation for the quantum operator
that corresponds to the classical functionWR;p;v˝w). Flat connections that satisfy the boundary counditions
are in one-to-one correspondence with the basis of states  u that diagonalize the Hitchin hamiltonians. The
Wilson operators are diagonal in this basis, and the eigenvalue of WR;p;v˝w on a given  u is just the dual
pairing .sR.v/; NsR�.w// between the dual vector spaces LER;p and LER�;p, since flat connections on†�X
are just pullbacks from X .

A dual ’t Hooft operator defined using S -duality will have the same eigenvalues as its associated Wilson
operator; this is a basic feature of the notion of S -duality. However, the question then arises which ’t Hooft
operator in the A-model corresponds to a given Wilson operator in the B-model. In particular, what are
the endpoints of the operator TR;p? This is actually a subtle point. We will sketch the story but not go
over it in detail (the details are worked out in §4.3 of [5]). The idea is that the dual ’t Hooft operators
produce a jump in the fields and in the associated Higgs bundle in the sense that the Higgs bundles on
different sides of a given ’t Hooft operator are not isomorphic. This leads us to the notion of a “Hecke
modification” of a Higgs bundle and in general to the collection of all such. Further, this suggests that
we can view a ’t Hooft operator as a boundary or interface between two copies of the A-model (below
and above it). Generalizing slightly, we can also view it as a brane of type .B;A;A) in the A-model
of a product MH .X;G/ � MH .X;G/ after “folding” along TR;p. It then takes some careful analysis
of this brane to find that the quantized operator acting on H; the quantization can be interpreted as or
represented by an integral kernel which is a half-density on M.X;G/ �M.X;G/ (recall that geometric
quantization quantizes the cotangent bundle T �M.X;G/). After a lengthy analysis in §4.3.3 of [5], one
finds that there is a particular unique holomorphic section �0 of K1=2

ZR;p
, where ZR;p is the support of

the brane mentioned above. Furthermore, this section (more accurately, a certain modification thereof)
can be described by a function ı in the Hitchin hamiltonians which is determined exactly by the dual
Wilson operator corresponding to TR;p. Unfortunately, this last paragraph is probably difficult to understand
without working through the details, but we felt it was at least helpful to give a taste of what was going on
with the Wilson-’t Hooft duality.

We feel that the gauge theory picture has in some sense been told, at least at a basic level, as we have now
seen both sides of the analytic Langlands correspondence appear in this setting. How the oper condition
arises naturally out of the physics has been explained, and answers to some conjectures from [2],[3] have
been obtained.
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